RDD算子——概念及部分操作

RDD 的算子

分类

特点

  • Spark 中所有的 Transformations 是 Lazy (惰性)的,它们不会立即执行获得结果,相反,它们只会记录在数据集上要应用的操
    作.只有当需要返回结果给 Driver 时,才会执行这些操作,通过 DAGScheduler 和 TaskScheduler 分发到集群中运行,这个特性
    叫做 惰性求值
  • 默认情况下,每一个Action运行的时候,其所关联的所有 Transformation RDD 都会重新计算,但是也可以使用 presist 方法将 RDD 持久化到磁盘或者内存中.
  • 这个时候为了下次可以更快的访问,会把数据保存到集群上,

针对KV 和 数字 类型的数据,Spark提供了什么操作

  1. 针对KV类型的数据,Spark提供了什么操作:

    键值型数据本质上就是一个二元元组, 键值对类型的 RDD 表示为 RDD[(K, V)]

    RDD 对键值对的额外支持是通过隐式支持来完成的, 一个 RDD[(K, V)], 可以被隐式转换为一个 PairRDDFunctions 对象, 从而调用其中的方法.

    既然对键值对的支持是通过 PairRDDFunctions提供的, 那么从 PairRDDFunctions中就可以看到这些支持有什么

    类别 算子
    聚合操作 reduceByKey
    foldByKey
    combineByKey
    分组操作 cogroup (不常见)
    groupByKey
    连接操作 join
    leftOuterJoin
    rightOuterJoin
    排序操作 sortBy
    sortByKey
    Action countByKey
    take
    collect
  2. 针对数字型的数据、spark提供了什么操作:

    对于数字型数据的额外支持基本上都是 Action 操作, 而不是转换操作

    算子 含义
    count 个数
    mean 均值
    sum 求和
    max 最大值
    min 最小值
    variance 方差
    sampleVariance 从采样中计算方差
    stdev 标准差
    sampleStdev 采样的标准差
    • code

      scala 复制代码
      @Test
      def numberic(): Unit={
        val rdd = sc.parallelize(Seq(1, 2, 3, 4, 10, 20, 30, 50, 100))
        // 最大值
        println(rdd.max()) // 100
        // 最小值
        println(rdd.min()) // 1
        // 平均数
        println(rdd.mean()) // 24.444444444444443
        // 和
        println(rdd.sum()) // 220.0
        // ...........
      }
相关推荐
BYSJMG26 分钟前
计算机毕设选题:基于Python+MySQL校园美食推荐系统【源码+文档+调试】
大数据·开发语言·python·mysql·django·课程设计·美食
索迪迈科技1 小时前
Flink Task线程处理模型:Mailbox
java·大数据·开发语言·数据结构·算法·flink
深空数字孪生7 小时前
储能调峰新实践:智慧能源平台如何保障风电消纳与电网稳定?
大数据·人工智能·物联网
百胜软件@百胜软件8 小时前
胜券POS:打造智能移动终端,让零售智慧运营触手可及
大数据
摩羯座-185690305949 小时前
Python数据可视化基础:使用Matplotlib绘制图表
大数据·python·信息可视化·matplotlib
在未来等你9 小时前
Kafka面试精讲 Day 13:故障检测与自动恢复
大数据·分布式·面试·kafka·消息队列
jiedaodezhuti9 小时前
Flink通讯超时问题深度解析:Akka AskTimeoutException解决方案
大数据·flink
庄小焱9 小时前
大数据存储域——Kafka实战经验总结
大数据·kafka·大数据存储域
zskj_qcxjqr10 小时前
告别传统繁琐!七彩喜艾灸机器人:一键开启智能养生新时代
大数据·人工智能·科技·机器人
每日新鲜事11 小时前
Saucony索康尼推出全新 WOOOLLY 运动生活羊毛系列 生动无理由,从专业跑步延展运动生活的每一刻
大数据·人工智能