【OCR】实战使用 - ocr 识别图片中的文字

实战使用 - ocr 识别图片中的文字

在Python中,OCR(Optical Character Recognition,光学字符识别)通常使用一些开源库来实现,如 pytesseract、Tesseract、PIL(Python Imaging Library)等。以下是一个基本的示例,说明如何使用pytesseract和PIL库来识别图片中的文字:

python 复制代码
import pytesseract
from PIL import Image

# 打开图片文件
image = Image.open('your_image_file_path.jpg')

# 将图片转换为灰度图像以提高识别效果
gray_image = image.convert('L')

# 使用pytesseract进行文字识别
text = pytesseract.image_to_string(gray_image)

# 打印识别出的文字
print(text)

# 如果你还需要保存处理后的图像,可以使用以下代码:
gray_image.save('processed_image.png')

在这个示例中:

  1. 首先导入所需的库。
  2. 使用Image.open()函数打开图片文件。
  3. 使用convert()函数将图片转换为灰度图像,这有助于提高OCR的识别准确率。
  4. 使用pytesseract.image_to_string()函数对图像进行文字识别,并将结果存储在text变量中。
  5. 打印识别出的文字。
  6. 如果需要保存处理后的图像(这里是灰度图像),可以使用save()函数。

注意:

  • 确保已经安装了Tesseract OCR引擎以及相关的语言数据包。你可以通过以下命令安装Tesseract(假设你已经安装了Homebrew):
bash 复制代码
brew install tesseract
  • 安装 pytesseract 库:
python 复制代码
pip install pytesseract
  • 根据你的系统和Tesseract的安装位置,可能需要在使用pytesseract时指定Tesseract的路径。
  • Tesseract的识别效果可能会受到图片质量、文字清晰度、字体类型和大小等因素的影响。对于复杂的图像或特定类型的文本,可能需要进行额外的预处理步骤或使用更高级的OCR技术。
    设置识别文字的语言
    在使用Tesseract OCR进行文字识别时,你可以通过以下方式设置识别的语言:
python 复制代码
import pytesseract

# 设置识别语言为中文(简体)
pytesseract.pytesseract.tesseract_cmd = '/usr/bin/tesseract'  # 如果需要指定Tesseract路径
language = 'chi_sim'  # 中文(简体)的语言代码

# 打开图片文件
image = Image.open('your_image_file_path.jpg')

# 将图片转换为灰度图像以提高识别效果
gray_image = image.convert('L')

# 使用pytesseract进行文字识别,同时指定识别语言
text = pytesseract.image_to_string(gray_image, lang=language)

# 打印识别出的文字
print(text)

在这个示例中,我们设置了识别语言为中文(简体),语言代码为chi_sim。你需要根据你想要识别的语言来更改这个代码。

以下是一些常见语言的Tesseract语言代码:

  • 英语:eng
  • 简体中文:chi_sim
  • 繁体中文:chi_tra
  • 法语:fra
  • 德语:deu
  • 日语:jpn
  • 韩语:kor

如果你需要识别的语言不在这个列表中,你可以通过运行Tesseract命令行工具并输入tesseract --list-langs来查看所有支持的语言。

请注意,为了识别特定语言的文字,你需要在你的系统上安装相应的Tesseract语言数据包。这些数据包通常可以通过Tesseract的安装程序或者单独下载安装。

如果你不知道如何安装Tesseract语言数据包,可以参考我之前的文章:
【OCR】 - Tesseract OCR在mac系统中安装
【OCR】 - Tesseract OCR在Windows系统中安装

相关推荐
硅谷秋水9 分钟前
端到端自动驾驶的数据规模化定律
人工智能·深度学习·机器学习·计算机视觉·自动驾驶
白熊1882 小时前
【计算机视觉】CV实战项目 -深度解析PaddleSegSharp:基于PaddleSeg的.NET图像分割解决方案
人工智能·计算机视觉·.net
落樱弥城3 小时前
图像处理——边缘检测
图像处理·人工智能·计算机视觉
余弦的倒数3 小时前
计算机视觉各类任务评价指标详解
人工智能·计算机视觉
蚂蚁20149 小时前
卷积神经网络(二)
人工智能·计算机视觉
poppyCL11 小时前
java使用CMU sphinx语音识别
ocr·语音识别·cmusphinx
z_mazin11 小时前
反爬虫机制中的验证码识别:类型、技术难点与应对策略
人工智能·计算机视觉·目标跟踪
jndingxin14 小时前
OpenCV 图形API(60)颜色空间转换-----将图像从 YUV 色彩空间转换为 RGB 色彩空间函数YUV2RGB()
人工智能·opencv·计算机视觉
知舟不叙14 小时前
OpenCV中的SIFT特征提取
人工智能·opencv·计算机视觉
__lost17 小时前
Python图像变清晰与锐化,调整对比度,高斯滤波除躁,卷积锐化,中值滤波钝化,神经网络变清晰
python·opencv·计算机视觉