elasticsearch查询性能优化方案

  1. 索引设计优化:

    • 确保正确选择和配置分词器和索引设置,以适应你的数据类型和查询需求。
    • 对于高基数字段(cardinality),使用合适的字段类型和索引设置,如 keyword 类型或布尔索引。
    • 避免过度索引,只索引需要查询的字段。
    • 考虑使用更少的分片来减少索引和查询的开销。
  2. 查询DSL 优化:

    • 使用过滤器(filter)而不是查询(query),尽量避免评分计算。
    • 将频繁执行的查询结果缓存起来,使用 Elasticsearch 的缓存机制。
    • 使用查询缓存(query cache)来缓存经常使用的查询结果。
    • 使用布尔查询(bool query)来组合多个查询条件,以减少查询的数量。
  3. 性能调优参数:

    • 调整索引和节点级别的性能参数,如刷新间隔、副本数量、分片大小等。
    • 增加系统资源,如 CPU、内存和磁盘空间,以提高查询的并发处理能力。
    • 调整线程池大小和队列长度,以适应并发查询请求的负载。
  4. 缓存和预热:

    • 使用 Elasticsearch 的查询缓存(query cache)来缓存经常使用的查询结果。
    • 预热缓存,在系统启动或重启后执行一些常见查询,以填充缓存。
  5. 硬件和网络优化:

    • 使用高性能的硬件设备,如 SSD 硬盘、高速网络等,以提高读写性能。
    • 将 Elasticsearch 集群部署在离用户较近的地理位置,以减少网络延迟。
  6. 集群规模和负载均衡:

    • 根据数据量和查询负载的增长情况,适时扩展 Elasticsearch 集群规模。
    • 使用负载均衡器来分发查询请求,以平衡集群节点的负载。

以上是一些常见的 Elasticsearch 查询性能优化方案。具体的优化策略应根据实际情况进行调整和实施,并进行性能测试和监测,以获得最佳的查询性能。

相关推荐
1024find21 小时前
Spark on k8s部署
大数据·运维·容器·spark·kubernetes
计算机编程-吉哥1 天前
大数据毕业设计-基于大数据的NBA美国职业篮球联赛数据分析可视化系统(高分计算机毕业设计选题·定制开发·真正大数据·机器学习毕业设计)
大数据·毕业设计·计算机毕业设计选题·机器学习毕业设计·大数据毕业设计·大数据毕业设计选题推荐·大数据毕设项目
计算机编程-吉哥1 天前
大数据毕业设计-基于大数据的BOSS直聘岗位招聘数据可视化分析系统(高分计算机毕业设计选题·定制开发·真正大数据·机器学习毕业设计)
大数据·毕业设计·计算机毕业设计选题·机器学习毕业设计·大数据毕业设计·大数据毕业设计选题推荐·大数据毕设项目
RunningShare1 天前
从“国庆景区人山人海”看大数据处理中的“数据倾斜”难题
大数据·flink
Hello.Reader1 天前
Flink 执行模式在 STREAMING 与 BATCH 之间做出正确选择
大数据·flink·batch
文火冰糖的硅基工坊1 天前
《投资-99》价值投资者的认知升级与交易规则重构 - 什么是周期性股票?有哪些周期性股票?不同周期性股票的周期多少?周期性股票的买入和卖出的特点?
大数据·人工智能·重构·架构·投资·投机
Elastic 中国社区官方博客1 天前
Elasticsearch:使用推理端点及语义搜索演示
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
武子康1 天前
Java-143 深入浅出 MongoDB NoSQL:MongoDB、Redis、HBase、Neo4j应用场景与对比
java·数据库·redis·mongodb·性能优化·nosql·hbase
数据智能老司机1 天前
数据工程设计模式——冷热数据存储
大数据·设计模式·架构
Hello.Reader2 天前
Flink 连接器与格式thin/uber 制品、打包策略与上线清单
大数据·flink