机器学习_9、朴素贝叶斯

朴素贝叶斯解决鸢尾花数据集问题

#高斯朴素贝叶斯分类
#coding=utf-8
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
import numpy as np

# 导入数据集,并查看数据特征分布
data = load_iris()
#print(data.keys())
#print("目标数据类别:",data["target_names"])
# 提取特征数据和分类标签
X, y = data["data"], data["target"]

# 划分训练集与测试集
# 让参数stratify=y,使测试集与训练集中各类别样本数量的比例与原数据集中
# 各类别的样本数量比例相同
X_train, X_test, y_train, y_test = \
    train_test_split(X,y,test_size=0.2,stratify=y,random_state=1)

# 创建高斯朴素贝叶斯对象
model = GaussianNB()
# sklearn库支持三种朴素贝叶斯,分别是高斯朴素贝叶斯,多项式朴素贝叶斯,伯努利朴素贝叶斯
#高斯朴素贝叶斯GaussianNB,假设标签特征数据都服从高斯分布(正态分布)
#多项式朴素贝叶斯MultinomialNB,假设特征是由一个简单多项式分布生成,即多次重复实验。
#伯努利朴素贝叶斯(BernoulliNB),假设特征的先验概率为二元伯努利分布,即0和1,适用于二元离散特征
# 用训练集数据训练模型
model.fit(X_train, y_train)

# 性能评估
print("训练集准确率:", model.score(X_train, y_train))
print("测试集准确率:", model.score(X_test, y_test))

# 构建一个样本特征数据的数组
X_new = np.array([[4.5, 2.8, 2.5, 0.3]])
# 预测新数据的分类标签
class_code = model.predict(X_new)
print("预测的分类标签:", class_code)
print("预测的分类名称:", data["target_names"][class_code])

# 也可以查看属于各类别的概率
code_prob = model.predict_proba(X_new)
print("预测样本属于各标签的概率:\n", code_prob)
# 概率最大值的位置索引,axis=1求每一行的最大值索引
maxLoc = code_prob.argmax(axis=1)
print("每个样本预测标签最大概率值所在的标签序号:", maxLoc)
# 根据标签位置获取标签值(代码)
label = model.classes_[maxLoc]
print("预测的标签值:",label)
# 标签对应的鸢尾花种类
print("预测的鸢尾花种类名称:",data.target_names[label])
相关推荐
牧歌悠悠1 小时前
【深度学习】Unet的基础介绍
人工智能·深度学习·u-net
坚毅不拔的柠檬柠檬1 小时前
AI革命下的多元生态:DeepSeek、ChatGPT、XAI、文心一言与通义千问的行业渗透与场景重构
人工智能·chatgpt·文心一言
坚毅不拔的柠檬柠檬1 小时前
2025:人工智能重构人类文明的新纪元
人工智能·重构
jixunwulian1 小时前
DeepSeek赋能AI边缘计算网关,开启智能新时代!
人工智能·边缘计算
Archie_IT2 小时前
DeepSeek R1/V3满血版——在线体验与API调用
人工智能·深度学习·ai·自然语言处理
大数据追光猿2 小时前
Python应用算法之贪心算法理解和实践
大数据·开发语言·人工智能·python·深度学习·算法·贪心算法
灵感素材坊3 小时前
解锁音乐创作新技能:AI音乐网站的正确使用方式
人工智能·经验分享·音视频
xinxiyinhe3 小时前
如何设置Cursor中.cursorrules文件
人工智能·python
AI服务老曹3 小时前
运用先进的智能算法和优化模型,进行科学合理调度的智慧园区开源了
运维·人工智能·安全·开源·音视频
alphaAIstack4 小时前
大语言模型推理能力从何而来?
人工智能·语言模型·自然语言处理