MySQL 主从延迟的常见原因及解决方法

承蒙大家的支持和厚爱,刚上市的《MySQL实战》已经跃居京东自营数据库图书热卖榜第1名 **,**收到的反馈也普遍不错,欢迎大家购买。

正文

主从延迟作为 MySQL 的痛点已经存在很多年了,以至于大家都有一种错觉:有 MySQL 复制的地方就有主从延迟。

对于主从延迟的原因,很多人将之归结为从库的单线程重放。

但实际上,这个说法比较片面,因为很多场景,并行复制方案也解决不了,譬如从库 SQL 线程被阻塞了,从库磁盘 IO 存在瓶颈等。

很多童鞋在分析此类问题时缺乏一个系统的方法论,以致无法准确地定位出主从延迟的根本原因。

下面就如何分析主从延迟做一个系统、全面的总结。

本文主要包括以下两方面的内容。

  1. 如何分析主从延迟。
  2. 主从延迟的常见原因及解决方法。

下一篇文章会介绍如何监控主从延迟,包括如何解读 Seconds_Behind_Master、Seconds_Behind_Master 的局限性、pt-heartbeat 及 MySQL 8.0 原生的解决方案,敬请留意。

如何分析主从延迟

分析主从延迟一般会采集以下三类信息。

从库服务器的负载情况

为什么要首先查看服务器的负载情况呢?因为软件层面的所有操作都需要系统资源来支撑。

常见的系统资源有四类:CPU、内存、IO、网络。对于主从延迟,一般会重点关注 CPU 和 IO 。

分析 CPU 是否达到瓶颈,常用的命令是 top,通过 top 我们可以直观地看到主机的 CPU 使用情况。以下是 top 中 CPU 相关的输出。

Cpu(s):  0.2%us,  0.2%sy,  0.0%ni, 99.5%id,  0.0%wa,  0.0%hi,  0.2%si,  0.0%st

下面我们看看各个指标的具体含义。

  • us:处理用户态( user )任务的 CPU 时间占比。

  • sy:处理内核态( system )任务的 CPU 时间占比。

  • ni:处理低优先级进程用户态任务的 CPU 时间占比。

    进程的优先级由 nice 值决定,nine 的范围是 -20 ~ 19 ,值越大,优先级越低。其中,1 ~ 19 称之为低优先级。

  • id:处于空闲状态( idle )的 CPU 时间占比。

  • wa:等待 IO 的 CPU 时间占比。

  • hi:处理硬中断( irq )的 CPU 时间占比。

  • si:处理软中断( softirq )的 CPU 使用率。

  • st:当系统运行在虚拟机中的时候,被其它虚拟机占用( steal )的 CPU 时间占比。

一般来说,当 CPU 使用率 ( 1 - 处于空闲状态的 CPU 时间占比 )超过 90% 时,需引起足够关注。毕竟,对于数据库应用来说,CPU 很少是瓶颈,除非有大量的慢 SQL 。

接下来看看 IO。

查看磁盘 IO 负载情况,常用的命令是 iostat 。

# iostat -xm 1
avg-cpu:  %user   %nice %system %iowait  %steal   %idle
           4.21    0.00    1.77    0.35    0.00   93.67

Device:         rrqm/s   wrqm/s     r/s     w/s    rMB/s    wMB/s avgrq-sz avgqu-sz   await r_await w_await  svctm  %util
sda               0.00     0.00    0.00    0.00     0.00     0.00     0.00     0.00    0.00    0.00    0.00   0.00   0.00
sdb               0.00     0.00  841.00 3234.00    13.14    38.96    26.19     0.60    0.15    0.30    0.11   0.08  32.60

命令中指定了 3 个选项,其中,

  • -x:打印扩展信息。

  • -m:指定吞吐量的单位是 MB/s ,默认是 KB/s 。

  • 1:每隔 1s 打印一次。

下面看看输出中各指标的具体含义。

  • rrqm/s:每秒被合并的读请求的数量。

  • wrqm/s:每秒被合并的写请求的数量。

  • r/s:每秒发送给磁盘的读请求的数量。

  • w/s:每秒写入磁盘的写请求的数量。注意,这里的请求是合并后的请求。r/s + w/s 等于 IOPS 。

  • rMB/s:每秒从磁盘读取的数据量。

  • wMB/s:每秒写入磁盘的数据量。rMB/s + wMB/s 等于吞吐量。

  • avgrq-sz:I/O 请求的平均大小,单位是扇区,扇区的大小是 512 字节。一般而言,I/O 请求越大,耗时越长。

  • avgqu-sz:队列里的平均 I/O 请求数量。

  • await:I/O 请求的平均耗时,包括磁盘的实际处理时间及队列中的等待时间,单位 ms 。

    其中,r_await 是读请求的平均耗时,w_await 是写请求的平均耗时。

  • svctm:I/O 请求的平均服务时间,单位 ms 。注意,这个指标已弃用,在后续版本会移除。

  • %util:磁盘饱和度。反映了一个采样周期内,有多少时间在做 I/O 操作。

一般来说,我们会重点关注 await 和 %util。

对于只能串行处理 I/O 请求的设备来说,%util 接近 100% ,就意味着设备饱和。但对于 RAID、SSD 等设备,因为它能并行处理,故该值参考意义不大,即使达到了 100% ,也不意味着设备出现了饱和。至于是否达到了性能上限,需参考性能压测下的 IOPS 和吞吐量。

主从复制状态

对于主库,执行 SHOW MASTER STATUS 。

mysql> show master status;
+------------------+----------+--------------+------------------+---------------------------------------------+
| File             | Position | Binlog_Do_DB | Binlog_Ignore_DB | Executed_Gtid_Set                           |
+------------------+----------+--------------+------------------+---------------------------------------------+
| mysql-bin.000004 |  1631495 |              |                  | bd6b3216-04d6-11ec-b76f-000c292c1f7b:1-5588 |
+------------------+----------+--------------+------------------+---------------------------------------------+
1 row in set (0.00 sec)

SHOW MASTER STATUS 的输出中重点关注 File 和 Position 这两个指标的值。

对于从库,执行 SHOW SLAVE STATUS 。

mysql> show slave status\G
*************************** 1. row ***************************
              ...
              Master_Log_File: mysql-bin.000004
          Read_Master_Log_Pos: 1631495
          ...
        Relay_Master_Log_File: mysql-bin.000004
          ...
          Exec_Master_Log_Pos: 1631495
          ...

SHOW SLAVE STATUS 的输出中重点关注 Master_Log_File,Read_Master_Log_Pos,Relay_Master_Log_File,Exec_Master_Log_Pos 这四个指标的值。

接下来,重点比较以下两对值。

第一对:( File , Position ) & ( Master_Log_File , Read_Master_Log_Pos )

这里面,

  • ( File , Position ) 记录了主库 binlog 的位置。
  • ( Master_Log_File , Read_Master_Log_Pos ) 记录了 IO 线程当前正在接收的二进制日志事件在主库 binlog 中的位置。

如果 ( File , Position ) 大于 ( Master_Log_File , Read_Master_Log_Pos ) ,则意味着 IO 线程存在延迟。

第二对:( Master_Log_File , Read_Master_Log_Pos ) & ( Relay_Master_Log_File , Exec_Master_Log_Pos )

这里面,( Relay_Master_Log_File, Exec_Master_Log_Pos ) 记录了 SQL 线程当前正在重放的二进制日志事件在主库 binlog 的位置。

如果 ( Relay_Master_Log_File, Exec_Master_Log_Pos ) < ( Master_Log_File, Read_Master_Log_Pos ) ,则意味着 SQL 线程存在延迟。

主库 binlog 的写入量

主要是看主库 binlog 的生成速度,比如多少分钟生成一个。

主从延迟的常见原因及解决方法

下面分别从 IO 线程和 SQL 线程这两个方面展开介绍。

IO 线程存在延迟

下面看看 IO 线程出现延迟的常见原因及解决方法。

  1. 网络延迟。

    判断是否为网络带宽限制。如果是,可开启 slave_compressed_protocol 参数,启用 binlog 的压缩传输。或者从 MySQL 8.0.20 开始,通过 binlog_transaction_compression 参数开启 binlog 事务压缩。

  2. 磁盘 IO 存在瓶颈 。

    可调整从库的双一设置或关闭 binlog。

    注意,在 MySQL 5.6 中,如果开启了 GTID ,则会强制要求开启 binlog ,MySQL 5.7 无此限制。

  3. 网卡存在问题。

    这种情况不多见,但确实碰到过。当时是一主两从的架构,发现一台主机上的所有从库都延迟了,但这些从库对应集群的其它从库却没有延迟,后来通过 scp 远程拷贝文件进一步确认了该台主机的网络存在问题,最后经系统组确认,网卡存在问题。

一般情况下,IO 线程很少存在延迟。

SQL 线程存在延迟

下面看看 SQL 线程出现延迟的常见原因及解决方法。

主库写入量过大,SQL 线程单线程重放

具体体现如下:

  1. 从库磁盘 IO 无明显瓶颈。
  2. Relay_Master_Log_File , Exec_Master_Log_Pos 也在不断变化。
  3. 主库写入量过大。如果磁盘使用的是 SATA SSD,当 binlog 的生成速度快于 5 分钟一个时,从库重放就会有瓶颈。

这个是 MySQL 软件层面的硬伤。要解决该问题,可开启 MySQL 5.7 引入的基于 LOGICAL_CLOCK 的并行复制。

关于 MySQL 并行复制方案,可参考:MySQL 并行复制方案演进历史及原理分析

STATEMENT 格式下的慢 SQL

具体体现,在一段时间内 Relay_Master_Log_File , Exec_Master_Log_Pos 没有变化。

看下面这个示例,对 1 张千万数据的表进行 DELETE 操作,表上没有任何索引,在主库上执行用了 7.52s,观察从库的 Seconds_Behind_Master,发现它最大达到了 7s 。

mysql> show variables like 'binlog_format';
+---------------+-----------+
| Variable_name | Value     |
+---------------+-----------+
| binlog_format | STATEMENT |
+---------------+-----------+
1 row in set (0.00 sec)

mysql> select count(*) from sbtest.sbtest1;
+----------+
| count(*) |
+----------+
| 10000000 |
+----------+
1 row in set (1.41 sec)

mysql> show create table sbtest.sbtest1\G
*************************** 1. row ***************************
       Table: sbtest1
Create Table: CREATE TABLE `sbtest1` (
  `id` int NOT NULL,
  `k` int NOT NULL DEFAULT '0',
  `c` char(120) NOT NULL DEFAULT '',
  `pad` char(60) NOT NULL DEFAULT ''
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci
1 row in set (0.00 sec)

mysql> delete from sbtest.sbtest1 where id <= 100;
Query OK, 100 rows affected (7.52 sec)

对于这种执行较慢的 SQL ,并行复制实际上也是无能为力的, 此时只能优化 SQL。

在 MySQL 5.6.11 中,引入了参数 log_slow_slave_statements ,可将 SQL 重放过程中执行时长超过 long_query_time 的操作记录在慢日志中。

表上没有任何索引,且二进制日志格式为 ROW

同样,在一段时间内,Relay_Master_Log_File , Exec_Master_Log_Pos 不会变化。

如果表上没有任何索引,对它进行操作,在主库上只是一次全表扫描。但在从库重放时,因为是 ROW 格式,对于每条记录的操作都会进行一次全表扫描。

还是上面的表,同样的操作,只不过二进制日志格式为 ROW ,在主库上执行用了 7.53s ,但 Seconds_Behind_Master 最大却达到了 723s ,是 STATEMENT 格式下的 100 倍。

mysql> show variables like 'binlog_format';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| binlog_format | ROW   |
+---------------+-------+
1 row in set (0.00 sec)

mysql> delete from sbtest.sbtest1 where id <= 100;
Query OK, 100 rows affected (7.53 sec)

如果因为表上没有任何索引,导致主从延迟过大,常见的优化方案如下:

  1. 在从库上临时创建个索引,加快记录的重放。注意,尽量选择一个区分度高的列添加索引,列的区分度越高,重放的速度就越快。

  2. 将参数 slave_rows_search_algorithms 设置为 INDEX_SCAN,HASH_SCAN 。

    设置后,对于同样的操作,Seconds_Behind_Master 最大只有 53s 。

大事务

这里的大事务,指的是二进制日志格式为 ROW 的情况下,操作涉及的记录数较多。

还是上面的测试表,只不过这次 id 列是自增主键,执行批量更新操作。更新操作如下,其中,N 是记录数,M 是一个随机字符,每次操作的字符均不一样。

update sbtest.sbtest1 set c=repeat(M,120) where id<=N

接下来我们看看不同记录数下对应 Seconds_Behind_Master 的最大值。

记录数 主库执行时长(s) Seconds_Behind_Master最大值(s)
50000 0.76 1
200000 3.10 8
500000 17.32 39
1000000 63.47 122

可见,随着记录数的增加,Seconds_Behind_Master 也是不断增加的。

所以对于大事务操作,建议分而治之,每次小批量执行。

判断一个 binlog 是否存在大事务,可通过我之前写的一个 binlog_summary.py 的工具来分析,该工具的具体用法可参考:Binlog分析利器-binlog_summary.py

从库上有查询操作

从库上有查询操作,通常会有两方面的影响:

  1. 消耗系统资源。

  2. 锁等待。

常见的是从库的查询操作堵塞了主库的 DDL 操作。看下面这个示例。

mysql> show processlist;
+----+-----------------+-----------------+------+---------+------+----------------------------------+----------------------------------------+
| Id | User            | Host            | db   | Command | Time | State                            | Info                                   |
+----+-----------------+-----------------+------+---------+------+----------------------------------+----------------------------------------+
|  5 | event_scheduler | localhost       | NULL | Daemon  | 2239 | Waiting on empty queue           | NULL                                   |
| 17 | root            | localhost       | NULL | Query   |    0 | init                             | show processlist                       |
| 18 | root            | localhost       | NULL | Query   |   19 | User sleep                       | select id,sleep(1) from sbtest.sbtest1 |
| 19 | system user     | connecting host | NULL | Connect |  243 | Waiting for source to send event | NULL                                   |
| 20 | system user     |                 |      | Query   |   13 | Waiting for table metadata lock  | alter table sbtest.sbtest1 add c2 int  |
+----+-----------------+-----------------+------+---------+------+----------------------------------+----------------------------------------+
5 rows in set (0.00 sec)

从库上存在备份

常见的是备份的全局读锁阻塞了 SQL 线程的重放。看下面这个示例。

mysql> show processlist;
+----+-----------------+-----------------+------+---------+------+----------------------------------+----------------------------------------+
| Id | User            | Host            | db   | Command | Time | State                            | Info                                   |
+----+-----------------+-----------------+------+---------+------+----------------------------------+----------------------------------------+
|  5 | event_scheduler | localhost       | NULL | Daemon  | 4177 | Waiting on empty queue           | NULL                                   |
| 17 | root            | localhost       | NULL | Query   |    0 | init                             | show processlist                       |
| 18 | root            | localhost       | NULL | Query   |   36 | User sleep                       | select id,sleep(1) from sbtest.sbtest2 |
| 19 | system user     | connecting host | NULL | Connect | 2181 | Waiting for source to send event | NULL                                   |
| 20 | system user     |                 |      | Query   |    2 | Waiting for global read lock     | alter table sbtest.sbtest1 add c1 int  |
| 28 | root            | localhost       | NULL | Query   |   17 | Waiting for table flush          | flush tables with read lock            |
+----+-----------------+-----------------+------+---------+------+----------------------------------+----------------------------------------+
6 rows in set (0.00 sec)

磁盘 IO 存在瓶颈

这个时候可调整从库的双一设置或关闭 binlog。

总结

综合上面的分析,主从延迟的常见原因及解决方法如下图所示。

参考资料

  1. 深入理解iostat:https://bean-li.github.io/dive-into-iostat/
  2. 容易被误读的IOSTAT:http://linuxperf.com/?p=156
  3. iostat(1) --- Linux manual page:https://man7.org/linux/man-pages/man1/iostat.1.html
相关推荐
White_Mountain6 小时前
在Ubuntu中配置mysql,并允许外部访问数据库
数据库·mysql·ubuntu
老王笔记6 小时前
GTID下复制问题和解决
mysql
Lojarro7 小时前
【Spring】Spring框架之-AOP
java·mysql·spring
TianyaOAO8 小时前
mysql的事务控制和数据库的备份和恢复
数据库·mysql
Ewen Seong8 小时前
mysql系列5—Innodb的缓存
数据库·mysql·缓存
W21559 小时前
Liunx下MySQL:表的约束
数据库·mysql
nbsaas-boot11 小时前
探索 JSON 数据在关系型数据库中的应用:MySQL 与 SQL Server 的对比
数据库·mysql·json
奥顺11 小时前
PHPUnit使用指南:编写高效的单元测试
大数据·mysql·开源·php
苹果醋313 小时前
SpringBoot快速入门
java·运维·spring boot·mysql·nginx
ROCKY_81713 小时前
Mysql复习(一)
数据库·mysql