传感数据分析——小波滤波

传感数据分析------小波滤波

文章目录


前言

小波滤波算法是一种基于小波变换的滤波方法,其核心思想是将信号分解成不同的频率成分,然后对每个频率成分进行独立的处理。小波滤波器的设计和应用是小波分析的一个重要领域,它与传统的滤波方法相比,具有独特的优势。

在具体的实施过程中,小波滤波的基本策略通常包括以下步骤:首先,将信号变换到小波域;接着,将信号的小波变换与噪声的小波变换分离;最后,丢弃噪声的变换系数,由剩余的变换系数做逆变换得到去噪信号。

此外,小波变换的滤波器组实现,如Mallat算法,也是小波滤波的重要技术之一。该算法主要是通过卷积计算得到的,更具有一般性。

需要注意的是,阈值函数在小波阈值去噪算法中起着关键的作用,由于其阈值函数有着众多的改进方式和改进空间,因此在实际使用中有着广泛的适用性和良好的灵活性。

本文将调用PyWavelets库实现对一维传感数据的小波滤波方法。


本文正文内容

一、运行环境

系统: Windows 10 / Ubuntu 20.04

编程语言: Python 3.8

文本编译器: Vscode

所需库:matplotlib >= 2.2.2 , numpy >= 1.19.5, PyWavelets >= 1.4.1

二、Python实现

代码如下(示例):

python 复制代码
# @copyright all reseved
# @author: Persist_Zhang
import numpy as np
import pywt
import matplotlib.pyplot as plt

def plot_wavelet_filter(data, filtered_data):
    """
    绘制小波滤波前后的对比图
    :param data: 输入的一维数据
    :param filtered_data: 滤波后的数据
    """
    plt.figure(figsize=(10, 9))
    plt.plot(data, label='Original Data')
    plt.plot(filtered_data, label='Wavelet Filtered Data')
    plt.title('Curve of Data')
    plt.legend()
    plt.savefig("./figure/Wavelet_Filtering.png")
    plt.show()

def wavelet_filter(data, wavelet='db4', level=1):
    """
    使用小波滤波算法对一维数据进行滤波
    :param data: 输入的一维数据
    :param wavelet: 使用的小波类型,默认为'db4'
    :param level: 分解层数,默认为1
    :return: 滤波后的数据
    """
    # 将数据进行小波分解
    coeffs = pywt.wavedec(data, wavelet, level=level)
    
    # 设置阈值,小于阈值的系数置为0
    threshold = np.median(np.abs(coeffs[-level])) / 0.6745
    for i in range(1, len(coeffs)):
        coeffs[i] = pywt.threshold(coeffs[i], threshold, mode='soft')
    
    # 对滤波后的系数进行逆变换,得到滤波后的数据
    filtered_data = pywt.waverec(coeffs, wavelet)
    
    return filtered_data

if __name__ == '__main__':
    # 示例
    data = np.random.randn(100)
    filtered_data = wavelet_filter(data)
    plot_wavelet_filter(data, filtered_data)

结果图

在这个例子中,我们没有对阈值、小波类型和分解层数进行修改。如果需要进一步优化滤波效果,可以尝试调整这些参数。例如,可以尝试使用不同的小波类型(如'haar'、'sym5'等),或者增加分解层数。

如:

python 复制代码
# 生成信号
t = np.linspace(0, 1, num=2048)
signal = np.sin(2*np.pi*50*t) + np.sin(2*np.pi*120*t)
# 使用不同的小波类型进行信号分解
wavelet_types = ['db1', 'db2', 'db3', 'db4', 'db5', 'db6', 'db7', 'db8', 'sym2', 'sym3', 'sym4', 'sym5', 'sym6', 'sym7', 'sym8']
for wavelet in wavelet_types:
    # 信号分解
    coeffs = pywt.wavedec(signal, wavelet, level=3)
    
    # 重构信号
    reconstructed_signal = pywt.waverec(coeffs, wavelet)

总结

以上就是本文关于传感信号分析中小波滤波的使用,全部代码见上,还望多多收藏点赞,后续将会更新与分享更多传感数据处理的代码。

相关推荐
kaomiao202513 小时前
空间信息与数字技术和传统GIS专业有何不同?
大数据·信息可视化·数据分析
嘀咕博客14 小时前
爱图表:镝数科技推出的智能数据可视化平台
科技·信息可视化·数据分析·ai工具
fanstuck1 天前
基于大模型的个性化推荐系统实现探索与应用
大数据·人工智能·语言模型·数据挖掘
TG_yunshuguoji1 天前
亚马逊云代理:亚马逊云怎么样进行大规模数据分析与处理?
数据挖掘·数据分析·云计算·aws
Y学院1 天前
Python 数据分析:从新手到高手的“摸鱼”指南
python·数据分析
IT学长编程1 天前
计算机毕业设计 基于大数据技术的医疗数据分析与研究 Python 大数据毕业设计 Hadoop毕业设计选题【附源码+文档报告+安装调试】
大数据·hadoop·机器学习·数据分析·毕业设计·毕业论文·医疗数据分析
IT学长编程1 天前
计算机毕业设计 基于深度学习的酒店评论文本情感分析研究 Python毕业设计项目 Hadoop毕业设计选题 机器学习选题【附源码+文档报告+安装调试】
hadoop·python·深度学习·机器学习·数据分析·毕业设计·酒店评论文本情感分析
HaiLang_IT1 天前
数据分析毕业论文题目推荐:精选选题清单
大数据·数据分析·毕业设计
人大博士的交易之路1 天前
今日行情明日机会——20250912
大数据·数据挖掘·数据分析·缠论·缠中说禅·涨停回马枪·道琼斯结构
赵谨言1 天前
基于支持向量机的空间数据挖掘方法及其在旅游地理经济分析中的应用
经验分享·数据挖掘·毕业设计