传感数据分析——小波滤波

传感数据分析------小波滤波

文章目录


前言

小波滤波算法是一种基于小波变换的滤波方法,其核心思想是将信号分解成不同的频率成分,然后对每个频率成分进行独立的处理。小波滤波器的设计和应用是小波分析的一个重要领域,它与传统的滤波方法相比,具有独特的优势。

在具体的实施过程中,小波滤波的基本策略通常包括以下步骤:首先,将信号变换到小波域;接着,将信号的小波变换与噪声的小波变换分离;最后,丢弃噪声的变换系数,由剩余的变换系数做逆变换得到去噪信号。

此外,小波变换的滤波器组实现,如Mallat算法,也是小波滤波的重要技术之一。该算法主要是通过卷积计算得到的,更具有一般性。

需要注意的是,阈值函数在小波阈值去噪算法中起着关键的作用,由于其阈值函数有着众多的改进方式和改进空间,因此在实际使用中有着广泛的适用性和良好的灵活性。

本文将调用PyWavelets库实现对一维传感数据的小波滤波方法。


本文正文内容

一、运行环境

系统: Windows 10 / Ubuntu 20.04

编程语言: Python 3.8

文本编译器: Vscode

所需库:matplotlib >= 2.2.2 , numpy >= 1.19.5, PyWavelets >= 1.4.1

二、Python实现

代码如下(示例):

python 复制代码
# @copyright all reseved
# @author: Persist_Zhang
import numpy as np
import pywt
import matplotlib.pyplot as plt

def plot_wavelet_filter(data, filtered_data):
    """
    绘制小波滤波前后的对比图
    :param data: 输入的一维数据
    :param filtered_data: 滤波后的数据
    """
    plt.figure(figsize=(10, 9))
    plt.plot(data, label='Original Data')
    plt.plot(filtered_data, label='Wavelet Filtered Data')
    plt.title('Curve of Data')
    plt.legend()
    plt.savefig("./figure/Wavelet_Filtering.png")
    plt.show()

def wavelet_filter(data, wavelet='db4', level=1):
    """
    使用小波滤波算法对一维数据进行滤波
    :param data: 输入的一维数据
    :param wavelet: 使用的小波类型,默认为'db4'
    :param level: 分解层数,默认为1
    :return: 滤波后的数据
    """
    # 将数据进行小波分解
    coeffs = pywt.wavedec(data, wavelet, level=level)
    
    # 设置阈值,小于阈值的系数置为0
    threshold = np.median(np.abs(coeffs[-level])) / 0.6745
    for i in range(1, len(coeffs)):
        coeffs[i] = pywt.threshold(coeffs[i], threshold, mode='soft')
    
    # 对滤波后的系数进行逆变换,得到滤波后的数据
    filtered_data = pywt.waverec(coeffs, wavelet)
    
    return filtered_data

if __name__ == '__main__':
    # 示例
    data = np.random.randn(100)
    filtered_data = wavelet_filter(data)
    plot_wavelet_filter(data, filtered_data)

结果图

在这个例子中,我们没有对阈值、小波类型和分解层数进行修改。如果需要进一步优化滤波效果,可以尝试调整这些参数。例如,可以尝试使用不同的小波类型(如'haar'、'sym5'等),或者增加分解层数。

如:

python 复制代码
# 生成信号
t = np.linspace(0, 1, num=2048)
signal = np.sin(2*np.pi*50*t) + np.sin(2*np.pi*120*t)
# 使用不同的小波类型进行信号分解
wavelet_types = ['db1', 'db2', 'db3', 'db4', 'db5', 'db6', 'db7', 'db8', 'sym2', 'sym3', 'sym4', 'sym5', 'sym6', 'sym7', 'sym8']
for wavelet in wavelet_types:
    # 信号分解
    coeffs = pywt.wavedec(signal, wavelet, level=3)
    
    # 重构信号
    reconstructed_signal = pywt.waverec(coeffs, wavelet)

总结

以上就是本文关于传感信号分析中小波滤波的使用,全部代码见上,还望多多收藏点赞,后续将会更新与分享更多传感数据处理的代码。

相关推荐
Maxwell_li14 小时前
Pandas 描述分析和分组分析学习文档
学习·数据分析·numpy·pandas·matplotlib
来鸟 鸣间7 小时前
日常简单数据分析之matlab (一)
matlab·数据分析
Maxwell_li19 小时前
pandas数据合并
机器学习·数据分析·numpy·pandas·matplotlib
珑墨11 小时前
【AI产品】当下AI产品的变现模式深度分析
人工智能·ai·数据分析·产品运营·aigc·ai编程·ai写作
祝余Eleanor11 小时前
Day 30 函数专题2 装饰器
人工智能·python·机器学习·数据分析
Brduino脑机接口技术答疑15 小时前
脑机接口数据处理连载(六) 脑机接口频域特征提取实战:傅里叶变换与功率谱分析
人工智能·python·算法·机器学习·数据分析·脑机接口
自然语16 小时前
数字生已经进化到一个分水岭面临选择?先实现“动态识别“还是先实现“特征信息归纳分类“,文中给出以给出答案,大家选哪个方向?
人工智能·分类·数据挖掘
RickyWasYoung16 小时前
【聚类算法】高维数据的聚类
算法·数据挖掘·聚类
非著名架构师17 小时前
气象驱动的需求预测:零售企业如何通过气候数据分析实现库存精准控制
人工智能·深度学习·数据分析·transformer·风光功率预测·高精度天气预报数据
以山河作礼。17 小时前
解锁全球旅游数据:动态代理+AI智能推荐实战
大数据·人工智能·数据分析