【python】神经网络

构建神经网络的典型流程

  1. 定义一个拥有可学习参数的神经网络

  2. 遍历训练数据集

  3. 处理输入数据使其流经神经网络

  4. 计算损失值

  5. 将网络参数的梯度进行反向传播

  6. 以一定的规则更新网络的权重

卷积神经网络(pytorch自己写的,建议用第三方包)

导包

复制代码
from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.functional as F

建立神经网络类

复制代码
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        # 定义第一层卷积神经网络,输入通道为3,输出通道为6,卷积核大小为5*5
        self.conv1 = nn.Conv2d(3, 6, 5)
        # 定义第二层卷积神经网络,输入通道为6,输出通道为16,卷积核大小为5*5
        self.conv2 = nn.Conv2d(6, 16, 5)
        # 定义全连接层
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        # 在池化层窗口下进行池化操作
        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
        x = F.max_pool2d(F.relu(self.conv2(x)), 2)
        x = x.view(-1, self.num_flat_features(x))
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

    def num_flat_features(self, x):
        size = x.size()[1:]  # 除去批处理维度的其他所有维度
        num_features = 1
        for s in size:
            num_features *= s
        return num_features

使用

复制代码
net=Net()
param=list(net.parameters())
print(len(param))
print(param[0].size())
input=torch.randn(1,3,32,32)
out=net(input)
print(out)
相关推荐
源代码•宸4 小时前
分布式缓存-GO(分布式算法之一致性哈希、缓存对外服务化)
开发语言·经验分享·分布式·后端·算法·缓存·golang
我送炭你添花4 小时前
Pelco KBD300A 模拟器:03.Pelco-P 协议 8 字节完整拆解 + 与 Pelco-D 一一对应终极对照表
python·测试工具·运维开发
云和数据.ChenGuang4 小时前
PHP-FPM返回的File not found.”的本质
开发语言·php·运维工程师·运维技术
R.lin5 小时前
Java 8日期时间API完全指南
java·开发语言·python
yangpipi-5 小时前
《C++并发编程实战》 第4章 并发操作的同步
开发语言·c++
西南胶带の池上桜5 小时前
1.Pytorch模型应用(线性与非线性预测)
人工智能·pytorch·python
火钳游侠5 小时前
java单行注释,多行注释,文档注释
java·开发语言
有趣的我5 小时前
C++ 多态介绍
开发语言·c++
fie88896 小时前
波束赋形MATLAB代码实现
开发语言·matlab
丘狸尾6 小时前
gradio uv无法add
开发语言·python