【python】神经网络

构建神经网络的典型流程

  1. 定义一个拥有可学习参数的神经网络

  2. 遍历训练数据集

  3. 处理输入数据使其流经神经网络

  4. 计算损失值

  5. 将网络参数的梯度进行反向传播

  6. 以一定的规则更新网络的权重

卷积神经网络(pytorch自己写的,建议用第三方包)

导包

复制代码
from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.functional as F

建立神经网络类

复制代码
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        # 定义第一层卷积神经网络,输入通道为3,输出通道为6,卷积核大小为5*5
        self.conv1 = nn.Conv2d(3, 6, 5)
        # 定义第二层卷积神经网络,输入通道为6,输出通道为16,卷积核大小为5*5
        self.conv2 = nn.Conv2d(6, 16, 5)
        # 定义全连接层
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        # 在池化层窗口下进行池化操作
        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
        x = F.max_pool2d(F.relu(self.conv2(x)), 2)
        x = x.view(-1, self.num_flat_features(x))
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

    def num_flat_features(self, x):
        size = x.size()[1:]  # 除去批处理维度的其他所有维度
        num_features = 1
        for s in size:
            num_features *= s
        return num_features

使用

复制代码
net=Net()
param=list(net.parameters())
print(len(param))
print(param[0].size())
input=torch.randn(1,3,32,32)
out=net(input)
print(out)
相关推荐
hanbr4 小时前
C++ 初涉
开发语言·c++
Дерек的学习记录4 小时前
C++:入门基础(下)
开发语言·数据结构·c++·学习·算法·visualstudio
天云数据4 小时前
神经网络,人类表达的革命
人工智能·深度学习·神经网络·机器学习
徐同保4 小时前
python异步函数语法解析,async with ... as ...语法解析
数据库·python·oracle
云小逸4 小时前
【nmap源码解析】Nmap 核心技术深度解析:从源码到实战
开发语言·网络·windows·nmap
m***06685 小时前
SpringBoot项目中读取resource目录下的文件(六种方法)
spring boot·python·pycharm
前路不黑暗@5 小时前
Java项目:Java脚手架项目的公共模块的实现(二)
java·开发语言·spring boot·学习·spring cloud·maven·idea
人道领域5 小时前
Spring核心注解全解析
java·开发语言·spring boot
eWidget5 小时前
数据可视化进阶:Seaborn 柱状图、散点图与相关性分析
数据库·python·信息可视化·kingbase·数据库平替用金仓·金仓数据库
云深麋鹿5 小时前
标准库中的String类
开发语言·c++·容器