【python】神经网络

构建神经网络的典型流程

  1. 定义一个拥有可学习参数的神经网络

  2. 遍历训练数据集

  3. 处理输入数据使其流经神经网络

  4. 计算损失值

  5. 将网络参数的梯度进行反向传播

  6. 以一定的规则更新网络的权重

卷积神经网络(pytorch自己写的,建议用第三方包)

导包

复制代码
from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.functional as F

建立神经网络类

复制代码
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        # 定义第一层卷积神经网络,输入通道为3,输出通道为6,卷积核大小为5*5
        self.conv1 = nn.Conv2d(3, 6, 5)
        # 定义第二层卷积神经网络,输入通道为6,输出通道为16,卷积核大小为5*5
        self.conv2 = nn.Conv2d(6, 16, 5)
        # 定义全连接层
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        # 在池化层窗口下进行池化操作
        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
        x = F.max_pool2d(F.relu(self.conv2(x)), 2)
        x = x.view(-1, self.num_flat_features(x))
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

    def num_flat_features(self, x):
        size = x.size()[1:]  # 除去批处理维度的其他所有维度
        num_features = 1
        for s in size:
            num_features *= s
        return num_features

使用

复制代码
net=Net()
param=list(net.parameters())
print(len(param))
print(param[0].size())
input=torch.randn(1,3,32,32)
out=net(input)
print(out)
相关推荐
用户8356290780519 分钟前
Python 删除 Excel 工作表中的空白行列
后端·python
Json_10 分钟前
使用python-fastApi框架开发一个学校宿舍管理系统-前后端分离项目
后端·python·fastapi
数据智能老司机7 小时前
精通 Python 设计模式——分布式系统模式
python·设计模式·架构
数据智能老司机8 小时前
精通 Python 设计模式——并发与异步模式
python·设计模式·编程语言
数据智能老司机8 小时前
精通 Python 设计模式——测试模式
python·设计模式·架构
数据智能老司机8 小时前
精通 Python 设计模式——性能模式
python·设计模式·架构
c8i8 小时前
drf初步梳理
python·django
每日AI新事件8 小时前
python的异步函数
python
这里有鱼汤9 小时前
miniQMT下载历史行情数据太慢怎么办?一招提速10倍!
前端·python
databook18 小时前
Manim实现脉冲闪烁特效
后端·python·动效