【python】神经网络

构建神经网络的典型流程

  1. 定义一个拥有可学习参数的神经网络

  2. 遍历训练数据集

  3. 处理输入数据使其流经神经网络

  4. 计算损失值

  5. 将网络参数的梯度进行反向传播

  6. 以一定的规则更新网络的权重

卷积神经网络(pytorch自己写的,建议用第三方包)

导包

复制代码
from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.functional as F

建立神经网络类

复制代码
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        # 定义第一层卷积神经网络,输入通道为3,输出通道为6,卷积核大小为5*5
        self.conv1 = nn.Conv2d(3, 6, 5)
        # 定义第二层卷积神经网络,输入通道为6,输出通道为16,卷积核大小为5*5
        self.conv2 = nn.Conv2d(6, 16, 5)
        # 定义全连接层
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        # 在池化层窗口下进行池化操作
        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
        x = F.max_pool2d(F.relu(self.conv2(x)), 2)
        x = x.view(-1, self.num_flat_features(x))
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

    def num_flat_features(self, x):
        size = x.size()[1:]  # 除去批处理维度的其他所有维度
        num_features = 1
        for s in size:
            num_features *= s
        return num_features

使用

复制代码
net=Net()
param=list(net.parameters())
print(len(param))
print(param[0].size())
input=torch.randn(1,3,32,32)
out=net(input)
print(out)
相关推荐
我爱一条柴ya10 分钟前
【AI大模型】神经网络反向传播:核心原理与完整实现
人工智能·深度学习·神经网络·ai·ai编程
留不住丨晚霞18 分钟前
说说SpringBoot常用的注解?
java·开发语言
大模型真好玩21 分钟前
准确率飙升!GraphRAG如何利用知识图谱提升RAG答案质量(额外篇)——大规模文本数据下GraphRAG实战
人工智能·python·mcp
198922 分钟前
【零基础学AI】第30讲:生成对抗网络(GAN)实战 - 手写数字生成
人工智能·python·深度学习·神经网络·机器学习·生成对抗网络·近邻算法
hardStudy_h28 分钟前
C++——内联函数与Lambda表达式
开发语言·jvm·c++
applebomb31 分钟前
没合适的组合wheel包,就自行编译flash_attn吧
python·ubuntu·attention·flash
TY-202533 分钟前
深度学习——神经网络1
人工智能·深度学习·神经网络
艾莉丝努力练剑1 小时前
【C语言】学习过程教训与经验杂谈:思想准备、知识回顾(三)
c语言·开发语言·数据结构·学习·算法
Chasing__Dreams1 小时前
python--杂识--18.1--pandas数据插入sqlite并进行查询
python·sqlite·pandas
彭泽布衣2 小时前
python2.7/lib-dynload/_ssl.so: undefined symbol: sk_pop_free
python·sk_pop_free