【python】神经网络

构建神经网络的典型流程

  1. 定义一个拥有可学习参数的神经网络

  2. 遍历训练数据集

  3. 处理输入数据使其流经神经网络

  4. 计算损失值

  5. 将网络参数的梯度进行反向传播

  6. 以一定的规则更新网络的权重

卷积神经网络(pytorch自己写的,建议用第三方包)

导包

复制代码
from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.functional as F

建立神经网络类

复制代码
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        # 定义第一层卷积神经网络,输入通道为3,输出通道为6,卷积核大小为5*5
        self.conv1 = nn.Conv2d(3, 6, 5)
        # 定义第二层卷积神经网络,输入通道为6,输出通道为16,卷积核大小为5*5
        self.conv2 = nn.Conv2d(6, 16, 5)
        # 定义全连接层
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        # 在池化层窗口下进行池化操作
        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
        x = F.max_pool2d(F.relu(self.conv2(x)), 2)
        x = x.view(-1, self.num_flat_features(x))
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

    def num_flat_features(self, x):
        size = x.size()[1:]  # 除去批处理维度的其他所有维度
        num_features = 1
        for s in size:
            num_features *= s
        return num_features

使用

复制代码
net=Net()
param=list(net.parameters())
print(len(param))
print(param[0].size())
input=torch.randn(1,3,32,32)
out=net(input)
print(out)
相关推荐
冷雨夜中漫步几秒前
Java中strip与trim()的区别
java·开发语言
xb11327 分钟前
C#多线程编程入门概念
开发语言
froginwe119 分钟前
PostgreSQL HAVING 子句详解
开发语言
yugi98783817 分钟前
基于MATLAB的延迟求和(DAS)波束形成算法实现
开发语言·算法·matlab
冷雨夜中漫步20 分钟前
Python入门——字符串
开发语言·python
Yvonne爱编码20 分钟前
Java 接口学习核心难点深度解析
java·开发语言·python
June bug33 分钟前
(#数组/链表操作)合并两个有重复元素的无序数组,返回无重复的有序结果
数据结构·python·算法·leetcode·面试·跳槽
黎雁·泠崖39 分钟前
Java继承入门:概念+特点+核心继承规则
java·开发语言
人工智能AI技术39 分钟前
【Agent从入门到实践】33 集成多工具,实现Agent的工具选择与执行
人工智能·python
AI街潜水的八角1 小时前
语义分割实战——基于EGEUNet神经网络印章分割系统3:含训练测试代码、数据集和GUI交互界面
人工智能·深度学习·神经网络