【python】神经网络

构建神经网络的典型流程

  1. 定义一个拥有可学习参数的神经网络

  2. 遍历训练数据集

  3. 处理输入数据使其流经神经网络

  4. 计算损失值

  5. 将网络参数的梯度进行反向传播

  6. 以一定的规则更新网络的权重

卷积神经网络(pytorch自己写的,建议用第三方包)

导包

from __future__ import print_function
import torch
import torch.nn as nn
import torch.nn.functional as F

建立神经网络类

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        # 定义第一层卷积神经网络,输入通道为3,输出通道为6,卷积核大小为5*5
        self.conv1 = nn.Conv2d(3, 6, 5)
        # 定义第二层卷积神经网络,输入通道为6,输出通道为16,卷积核大小为5*5
        self.conv2 = nn.Conv2d(6, 16, 5)
        # 定义全连接层
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        # 在池化层窗口下进行池化操作
        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
        x = F.max_pool2d(F.relu(self.conv2(x)), 2)
        x = x.view(-1, self.num_flat_features(x))
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

    def num_flat_features(self, x):
        size = x.size()[1:]  # 除去批处理维度的其他所有维度
        num_features = 1
        for s in size:
            num_features *= s
        return num_features

使用

net=Net()
param=list(net.parameters())
print(len(param))
print(param[0].size())
input=torch.randn(1,3,32,32)
out=net(input)
print(out)
相关推荐
信号处理学渣4 分钟前
matlab画图,选择性显示legend标签
开发语言·matlab
红龙创客4 分钟前
某狐畅游24校招-C++开发岗笔试(单选题)
开发语言·c++
蓝天星空5 分钟前
Python调用open ai接口
人工智能·python
jasmine s14 分钟前
Pandas
开发语言·python
郭wes代码14 分钟前
Cmd命令大全(万字详细版)
python·算法·小程序
leaf_leaves_leaf31 分钟前
win11用一条命令给anaconda环境安装GPU版本pytorch,并检查是否为GPU版本
人工智能·pytorch·python
biomooc34 分钟前
R 语言 | 绘图的文字格式(绘制上标、下标、斜体、文字标注等)
开发语言·r语言
夜雨飘零136 分钟前
基于Pytorch实现的说话人日志(说话人分离)
人工智能·pytorch·python·声纹识别·说话人分离·说话人日志
骇客野人36 分钟前
【JAVA】JAVA接口公共返回体ResponseData封装
java·开发语言
black^sugar38 分钟前
纯前端实现更新检测
开发语言·前端·javascript