【深度学习每日小知识】Logistic Loss 逻辑回归

逻辑回归的损失函数

线性回归的损失函数是平方损失。逻辑回归的损失函数是对数损失,定义如下:

L o g L o s s = ∑ ( x , y ) ∈ D − y log ⁡ ( y ′ ) − ( 1 − y ) log ⁡ ( 1 − y ′ ) LogLoss=\sum_{(x,y)\in D}-y\log(y')-(1-y)\log(1-y') LogLoss=(x,y)∈D∑−ylog(y′)−(1−y)log(1−y′)

其中:

  • ( x , y ) ∈ D (x,y)\in D (x,y)∈D 是包含许多有标签样本(即成对数据集)的数据集。 ( x , y ) ∈ D (x,y)\in D (x,y)∈D
  • y y y是有标签样本中的标签。由于这是逻辑回归,因此
    的每个 y y y值都必须是 0 或 1。
  • y ′ y' y′是针对 x x x中的一组特征的预测值(介于 0 和 1 之间)。

逻辑回归中的正则化

正则化在逻辑回归建模中极其重要。如果不进行正则化,高逻辑维度下的逻辑回归的渐近性会不断促使损失接近 0。因此,大多数逻辑回归模型都使用以下两种策略之一来降低模型复杂性:

  • L2 正则化。
  • 早停法,即限制训练步数或学习速率。

(我们将在后续中讨论第三个策略,即 L1 正则化。)

假设您为每个示例分配一个唯一 ID,并将每个 ID 映射到其自己的特征。如果您不指定正则化函数,模型将完全过拟合。这是因为模型会尝试在所有样本上将损失降低为零,并且永远无法实现,从而将每个指示器特征的权重提高至 +无穷大或-无穷大。当有大量罕见的交叉时,仅在一个样本上发生,就会出现包含特征组合的高维度数据。

幸运的是,使用 L 2 L_2 L2或早停法可以防止此问题出现。

AI插图

这是对逻辑回归中对数损失函数的可视化。图中展示了两条曲线:一条表示当预测值接近实际值时的损失,另一条表示当预测值远离实际值时的损失。X轴代表预测概率,Y轴代表损失。不同颜色的曲线和图例有助于区分这两种情况。

接下来,我将生成展示正则化效果的图像。

相关推荐
attitude.x19 分钟前
GEO优化供应商:AI搜索时代的“答案”构建与移山科技的引领,2025高性价比实战指南
人工智能·科技
井云AI1 小时前
井云智能体封装小程序:独立部署多开版 | 自定义LOGO/域名,打造专属AI智能体平台
人工智能·后端·小程序·前端框架·coze智能体·智能体网站·智能体小程序
张较瘦_1 小时前
[论文阅读] 人工智能 + 软件工程 | 技术债务管理新范式:五步法工作坊与行动研究实践
人工智能·软件工程
杨杨杨大侠1 小时前
Spring AI 系列(一):Spring AI 基础概念与架构入门
人工智能·spring·架构
nenchoumi31192 小时前
手持 Mid360 + RealSense 相机 + Jetson Orin 一体平台
人工智能·目标检测·计算机视觉·机器人·ros
大力财经3 小时前
百度Q2财报:总营收327亿 AI新业务收入首次超100亿
人工智能·百度
OAFD.8 小时前
机器学习之线性回归:原理、实现与实践
人工智能·机器学习·线性回归
SHIPKING39310 小时前
【机器学习&深度学习】LMDeploy的分布式推理实现
人工智能·深度学习
mit6.82411 小时前
[RestGPT] docs | RestBench评估 | 配置与环境
人工智能·python
CareyWYR11 小时前
每周AI论文速递(250818-250822)
人工智能