【深度学习每日小知识】Logistic Loss 逻辑回归

逻辑回归的损失函数

线性回归的损失函数是平方损失。逻辑回归的损失函数是对数损失,定义如下:

L o g L o s s = ∑ ( x , y ) ∈ D − y log ⁡ ( y ′ ) − ( 1 − y ) log ⁡ ( 1 − y ′ ) LogLoss=\sum_{(x,y)\in D}-y\log(y')-(1-y)\log(1-y') LogLoss=(x,y)∈D∑−ylog(y′)−(1−y)log(1−y′)

其中:

  • ( x , y ) ∈ D (x,y)\in D (x,y)∈D 是包含许多有标签样本(即成对数据集)的数据集。 ( x , y ) ∈ D (x,y)\in D (x,y)∈D
  • y y y是有标签样本中的标签。由于这是逻辑回归,因此
    的每个 y y y值都必须是 0 或 1。
  • y ′ y' y′是针对 x x x中的一组特征的预测值(介于 0 和 1 之间)。

逻辑回归中的正则化

正则化在逻辑回归建模中极其重要。如果不进行正则化,高逻辑维度下的逻辑回归的渐近性会不断促使损失接近 0。因此,大多数逻辑回归模型都使用以下两种策略之一来降低模型复杂性:

  • L2 正则化。
  • 早停法,即限制训练步数或学习速率。

(我们将在后续中讨论第三个策略,即 L1 正则化。)

假设您为每个示例分配一个唯一 ID,并将每个 ID 映射到其自己的特征。如果您不指定正则化函数,模型将完全过拟合。这是因为模型会尝试在所有样本上将损失降低为零,并且永远无法实现,从而将每个指示器特征的权重提高至 +无穷大或-无穷大。当有大量罕见的交叉时,仅在一个样本上发生,就会出现包含特征组合的高维度数据。

幸运的是,使用 L 2 L_2 L2或早停法可以防止此问题出现。

AI插图

这是对逻辑回归中对数损失函数的可视化。图中展示了两条曲线:一条表示当预测值接近实际值时的损失,另一条表示当预测值远离实际值时的损失。X轴代表预测概率,Y轴代表损失。不同颜色的曲线和图例有助于区分这两种情况。

接下来,我将生成展示正则化效果的图像。

相关推荐
聚客AI39 分钟前
🌟大模型为什么产生幻觉?预训练到推理的漏洞全揭秘
人工智能·llm·掘金·日新计划
Juchecar44 分钟前
一文讲清 nn.Sequential 等容器类
人工智能
阿里云云原生1 小时前
如何快速看懂「祖传项目」?Qoder 强势推出新利器
人工智能
美团技术团队1 小时前
LongCat-Flash:如何使用 SGLang 部署美团 Agentic 模型
人工智能·算法
程序员小袁3 小时前
基于C-MTEB/CMedQAv2-rerankingv的Qwen3-1.7b模型微调-demo
人工智能
飞哥数智坊4 小时前
AI 编程一年多,我终于明白:比技巧更重要的,是熟练度
人工智能·ai编程
新智元4 小时前
收手吧 GPT-5-Codex,外面全是 AI 编程智能体!
人工智能·openai
IT_陈寒4 小时前
Java 性能优化:5个被低估的JVM参数让你的应用吞吐量提升50%
前端·人工智能·后端
阿里云云原生5 小时前
阿里云基础设施 AI Tech Day AI 原生,智构未来——AI 原生架构与企业实践专场
人工智能
Memene摸鱼日报6 小时前
「Memene 摸鱼日报 2025.9.16」OpenAI 推出 GPT-5-Codex 编程模型,xAI 发布 Grok 4 Fast
人工智能·aigc