gradient_checkpointing

点评:本质是减少内存消耗的一种方式,以时间或者计算换内存

gradient_checkpointing(梯度检查点)是一种用于减少深度学习模型中内存消耗的技术。在训练深度神经网络时,反向传播算法需要在前向传播和反向传播之间存储中间计算结果,以便计算梯度并更新模型参数。这些中间结果的存储会占用大量的内存,特别是当模型非常深或参数量很大时。

梯度检查点技术通过在前向传播期间临时丢弃一些中间结果,仅保留必要的信息,以减少内存使用量。在反向传播过程中,只需要重新计算被丢弃的中间结果,而不需要存储所有的中间结果,从而节省内存空间。

实现梯度检查点的一种常见方法是将某些层或操作标记为检查点。在前向传播期间,被标记为检查点的层将计算并缓存中间结果。然后,在反向传播过程中,这些层将重新计算其所需的中间结果,以便计算梯度。

以下是一种简单的实现梯度检查点的伪代码:

```

for input, target in training_data:

Forward pass

x1 = layer1.forward(input)

x2 = layer2.forward(x1)

x3 = checkpoint(layer3, x2) # Apply checkpointing on layer3

x4 = layer4.forward(x3)

output = layer5.forward(x4)

Compute loss and gradient

loss = compute_loss(output, target)

gradient = compute_gradient(loss)

Backward pass

grad_x4 = layer5.backward(gradient)

grad_x3 = layer4.backward(grad_x4)

grad_x2 = checkpoint(layer3, x2, backward=True) # Apply checkpointing on layer3 during backward pass

grad_x1 = layer2.backward(grad_x2)

grad_input = layer1.backward(grad_x1)

Update model parameters

update_parameters(layer1)

update_parameters(layer2)

update_parameters(layer3)

update_parameters(layer4)

update_parameters(layer5)

```

在上述伪代码中,`checkpoint`函数用于标记需要进行梯度检查点的层。在前向传播期间,它计算并缓存中间结果;在反向传播期间,它重新计算中间结果,并传递梯度。这样,只有在需要时才会存储中间结果,从而减少内存消耗。

需要注意的是,梯度检查点技术在减少内存消耗的同时,会导致额外的计算开销。因为某些中间结果需要重新计算,所以整体的训练时间可能会稍微增加。因此,在决定使用梯度检查点时,需要权衡内存消耗和计算开销之间的折衷。

相关推荐
飞哥数智坊15 小时前
GPT-5-Codex 发布,Codex 正在取代 Claude
人工智能·ai编程
倔强青铜三15 小时前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试
虫无涯16 小时前
Dify Agent + AntV 实战:从 0 到 1 打造数据可视化解决方案
人工智能
Dm_dotnet18 小时前
公益站Agent Router注册送200刀额度竟然是真的
人工智能
算家计算18 小时前
7B参数拿下30个世界第一!Hunyuan-MT-7B本地部署教程:腾讯混元开源业界首个翻译集成模型
人工智能·开源
机器之心18 小时前
LLM开源2.0大洗牌:60个出局,39个上桌,AI Coding疯魔,TensorFlow已死
人工智能·openai
Juchecar20 小时前
交叉熵:深度学习中最常用的损失函数
人工智能
林木森ai20 小时前
爆款AI动物运动会视频,用Coze(扣子)一键搞定全流程(附保姆级拆解)
人工智能·aigc
聚客AI20 小时前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
BeerBear1 天前
【保姆级教程-从0开始开发MCP服务器】一、MCP学习压根没有你想象得那么难!.md
人工智能·mcp