机器学习(9)正则化

一、带正则化的成本函数(Regularized Cost Function)

1. 引入正则化的动机

在多特征模型中(例如多项式回归),当特征数量较多时,模型容易过拟合(Overfitting) 。为此我们可以在代价函数中加入一个正则化项(Regularization Term),用于"惩罚"过大的参数,使模型更加平滑、泛化性更强。

2. 带正则化的代价函数定义

假设线性回归的原始代价函数为:

为了避免权重 wj​ 过大,我们添加一个正则化项:

其中:

  • λ:正则化参数(Regularization Parameter)

  • 惩罚项(Penalty Term)

注意:偏置项 b 不参与正则化。

3. λ(正则化参数)的影响

  • 当 λ=0:无正则化,模型可能过拟合。

  • 当 λ 过大:参数被压得过小,模型可能欠拟合。

  • 选择合适的 λ 可以平衡偏差与方差(Bias--Variance Tradeoff)。


二、正则化线性回归(Regularized Linear Regression)

1. 梯度下降算法的正则化更新

带正则化的代价函数对应的梯度下降更新公式为:

解释:

  • 第一部分:普通的梯度下降更新。

  • 第二部分:是正则化项,会让参数 缩小。

2. 推导思路(简要)

从代价函数对 求偏导:

然后按梯度下降规则更新参数:

由此得到上面的更新公式。


三、正则化逻辑回归(Regularized Logistic Regression)

1. 更新逻辑回归的代价函数

逻辑回归的原始代价函数为:

其中:

加上正则化项后:


2. 正则化逻辑回归的梯度下降

对每个参数求偏导,得到更新公式:

与线性回归的区别在于:

  • 为 sigmoid 函数输出;

  • 代价函数使用对数损失;

  • 更新逻辑相同。


四、总结(Summary)

项目 线性回归 逻辑回归
原代价函数 平方误差 对数损失
正则化项
更新规则
偏置项 b 不参与正则化 不参与正则化
作用 减小参数,防止过拟合 减小参数,防止过拟合

五、例子说明

假设我们要预测房价,模型如下:

其中:

  • x1​:房屋面积

  • x2​:房龄

如果模型过拟合,说明参数 w1​,w2​ 过大。使用正则化后,代价函数变为:

随着训练进行,较大的 w1,w2​ 会被"惩罚",使模型更平滑、更稳定。

相关推荐
翔云 OCR API9 小时前
人工智能驱动下的OCR API技术演进与实践应用
人工智能·ocr
极客学术工坊9 小时前
2023年辽宁省数学建模竞赛-B题 数据驱动的水下导航适配区分类预测-基于支持向量机对水下导航适配区分类的研究
机器学习·支持向量机·数学建模·分类
南方者9 小时前
重磅升级!文心 ERNIE-5.0 新一代原生全模态大模型,这你都不认可它吗?!
人工智能·aigc
庄周迷蝴蝶9 小时前
旋转位置编码(Rotary Position Embedding,RoPE)
人工智能·机器学习
xier_ran10 小时前
深度学习:RMSprop 优化算法详解
人工智能·深度学习·算法
大千AI助手10 小时前
Prefix-Tuning:大语言模型的高效微调新范式
人工智能·神经网络·自然语言处理·llm·prefix-tuning·大千ai助手·前缀微调
雾江流10 小时前
RikkaHub 1.6.11 | 开源的本地大型语言模型聚合应用,支持多种AI服务提供商
人工智能·语言模型·自然语言处理·软件工程
Mr_Dwj10 小时前
【Python】Python 基本概念
开发语言·人工智能·python·大模型·编程语言
私人珍藏库10 小时前
AI一键PPT 2.0.3 一键智能生成
人工智能·powerpoint
com_4sapi11 小时前
2025 权威认证头部矩阵系统全景对比发布 双榜单交叉验证
大数据·c语言·人工智能·算法·矩阵·机器人