机器学习(9)正则化

一、带正则化的成本函数(Regularized Cost Function)

1. 引入正则化的动机

在多特征模型中(例如多项式回归),当特征数量较多时,模型容易过拟合(Overfitting) 。为此我们可以在代价函数中加入一个正则化项(Regularization Term),用于"惩罚"过大的参数,使模型更加平滑、泛化性更强。

2. 带正则化的代价函数定义

假设线性回归的原始代价函数为:

为了避免权重 wj​ 过大,我们添加一个正则化项:

其中:

  • λ:正则化参数(Regularization Parameter)

  • 惩罚项(Penalty Term)

注意:偏置项 b 不参与正则化。

3. λ(正则化参数)的影响

  • 当 λ=0:无正则化,模型可能过拟合。

  • 当 λ 过大:参数被压得过小,模型可能欠拟合。

  • 选择合适的 λ 可以平衡偏差与方差(Bias--Variance Tradeoff)。


二、正则化线性回归(Regularized Linear Regression)

1. 梯度下降算法的正则化更新

带正则化的代价函数对应的梯度下降更新公式为:

解释:

  • 第一部分:普通的梯度下降更新。

  • 第二部分:是正则化项,会让参数 缩小。

2. 推导思路(简要)

从代价函数对 求偏导:

然后按梯度下降规则更新参数:

由此得到上面的更新公式。


三、正则化逻辑回归(Regularized Logistic Regression)

1. 更新逻辑回归的代价函数

逻辑回归的原始代价函数为:

其中:

加上正则化项后:


2. 正则化逻辑回归的梯度下降

对每个参数求偏导,得到更新公式:

与线性回归的区别在于:

  • 为 sigmoid 函数输出;

  • 代价函数使用对数损失;

  • 更新逻辑相同。


四、总结(Summary)

项目 线性回归 逻辑回归
原代价函数 平方误差 对数损失
正则化项
更新规则
偏置项 b 不参与正则化 不参与正则化
作用 减小参数,防止过拟合 减小参数,防止过拟合

五、例子说明

假设我们要预测房价,模型如下:

其中:

  • x1​:房屋面积

  • x2​:房龄

如果模型过拟合,说明参数 w1​,w2​ 过大。使用正则化后,代价函数变为:

随着训练进行,较大的 w1,w2​ 会被"惩罚",使模型更平滑、更稳定。

相关推荐
Warren2Lynch12 小时前
利用 AI 协作优化软件更新逻辑:构建清晰的 UML 顺序图指南
人工智能·uml
ModelWhale13 小时前
当“AI+制造”遇上商业航天:和鲸助力头部企业,构建火箭研发 AI 中台
人工智能
ATMQuant13 小时前
量化指标解码13:WaveTrend波浪趋势 - 震荡行情的超买超卖捕手
人工智能·ai·金融·区块链·量化交易·vnpy
weixin_5091383413 小时前
语义流形探索:大型语言模型中可控涌现路径的实证证据
人工智能·语义空间
soldierluo13 小时前
大模型的召回率
人工智能·机器学习
Gofarlic_oms113 小时前
Windchill用户登录与模块访问失败问题排查与许可证诊断
大数据·运维·网络·数据库·人工智能
童话名剑13 小时前
人脸识别(吴恩达深度学习笔记)
人工智能·深度学习·人脸识别·siamese网络·三元组损失函数
_YiFei13 小时前
2026年AIGC检测通关攻略:降ai率工具深度测评(含免费降ai率方案)
人工智能·aigc
GISer_Jing14 小时前
AI Agent 智能体系统:A2A通信与资源优化之道
人工智能·aigc
Dev7z14 小时前
基于深度学习的车辆分类方法研究与实现-填补国内新能源车型和品牌识别空白
深度学习·yolo