RNN 和 Transformer 复杂度比较

这里假设BatchSize为 1,就是单样本的情况。

原始 RNN 块:

(1)单步计算 H,包含两个矩阵向量乘法,和一个激活,复杂度HidSize²

(2)一共有SeqLen步,所以整体复杂度SeqLen * HidSize²

LSTM 块:

(1)单步计算 F I C_hat O,包含八个矩阵向量乘法,和四个激活:HidSize²

(2)单步计算 C,包含两个逐元素乘法,和一个加法;HidSize²

(3)单步计算 H,包含一个逐元素乘法和一个激活;HidSize²

(4)一共有SeqLen步,所以整体复杂度SeqLen * HidSize²

TF 块:

(1)计算 QKV,包含三个矩阵乘法,SeqLen * HidSize²

(2)计算注意力矩阵,包含 HeadCount 个 矩阵乘法,HeadCount * HeadSize * SeqLen²

由于HidSize = HeadCount * HeadSize,实际上是HidSize * SeqLen²

(3)Softmax 激活,HeadCount * SeqLen² << HidSize * SeqLen²

(4)计算 O,包含HeadCount个矩阵乘法,HeadCount * HeadSize * SeqLen² = HidSize * SeqLen²

(5)计算输出向量,包含一个矩阵乘法SeqLen * HidSize²

(6)FFN ,两个矩阵乘法,SeqLen * HidSize²

(6)整体复杂度,SeqLen * HidSize² + HidSize * SeqLen²

HidSize是每层之间传输的嵌入向量的维度,大概几百维。

聊天的时候SeqLen大概几十到一百,明显低于HidSize,这个时候二者是差不多的。

长文本翻译的时候SeqLen是几千,那么 RNN 明显比 Transformer 快。

等于说,Transformer 的高复杂度缺点被并行掩盖了。在单机单卡这种不能并行的环境,效率远不如 RNN。这就是很多人一定要搞线性注意力的原因。

相关推荐
whaosoft-1433 分钟前
51c自动驾驶~合集15
人工智能
花楸树3 分钟前
前端搭建 MCP Client(Web版)+ Server + Agent 实践
前端·人工智能
用户876128290737413 分钟前
前端ai对话框架semi-design-vue
前端·人工智能
量子位14 分钟前
稚晖君刚挖来的 90 后机器人大牛:逆袭履历堪比爽文男主
人工智能·llm
量子位19 分钟前
200 亿机器人独角兽被曝爆雷,官方回应来了
人工智能·llm
机器之心22 分钟前
细节厘米级还原、实时渲染,MTGS方法突破自动驾驶场景重建瓶颈
人工智能
arbboter38 分钟前
【AI插件开发】Notepad++ AI插件开发实践:从Dock窗口集成到功能菜单实现
人工智能·notepad++·动态菜单·notepad++插件开发·dock窗口集成·ai代码辅助工具·ai对话窗口
jndingxin1 小时前
OpenCV 图形API(或称G-API)(1)
人工智能·opencv·计算机视觉
神马行空2 小时前
一文解读DeepSeek大模型在政府工作中具体的场景应用
人工智能·大模型·数字化转型·deepseek·政务应用
合合技术团队2 小时前
实测对比|法国 AI 独角兽公司发布的“最强 OCR”,实测效果如何?
大数据·人工智能·图像识别