RNN 和 Transformer 复杂度比较

这里假设BatchSize为 1,就是单样本的情况。

原始 RNN 块:

(1)单步计算 H,包含两个矩阵向量乘法,和一个激活,复杂度HidSize²

(2)一共有SeqLen步,所以整体复杂度SeqLen * HidSize²

LSTM 块:

(1)单步计算 F I C_hat O,包含八个矩阵向量乘法,和四个激活:HidSize²

(2)单步计算 C,包含两个逐元素乘法,和一个加法;HidSize²

(3)单步计算 H,包含一个逐元素乘法和一个激活;HidSize²

(4)一共有SeqLen步,所以整体复杂度SeqLen * HidSize²

TF 块:

(1)计算 QKV,包含三个矩阵乘法,SeqLen * HidSize²

(2)计算注意力矩阵,包含 HeadCount 个 矩阵乘法,HeadCount * HeadSize * SeqLen²

由于HidSize = HeadCount * HeadSize,实际上是HidSize * SeqLen²

(3)Softmax 激活,HeadCount * SeqLen² << HidSize * SeqLen²

(4)计算 O,包含HeadCount个矩阵乘法,HeadCount * HeadSize * SeqLen² = HidSize * SeqLen²

(5)计算输出向量,包含一个矩阵乘法SeqLen * HidSize²

(6)FFN ,两个矩阵乘法,SeqLen * HidSize²

(6)整体复杂度,SeqLen * HidSize² + HidSize * SeqLen²

HidSize是每层之间传输的嵌入向量的维度,大概几百维。

聊天的时候SeqLen大概几十到一百,明显低于HidSize,这个时候二者是差不多的。

长文本翻译的时候SeqLen是几千,那么 RNN 明显比 Transformer 快。

等于说,Transformer 的高复杂度缺点被并行掩盖了。在单机单卡这种不能并行的环境,效率远不如 RNN。这就是很多人一定要搞线性注意力的原因。

相关推荐
mit6.82435 分钟前
[AI React Web] 包与依赖管理 | `axios`库 | `framer-motion`库
前端·人工智能·react.js
小阿鑫1 小时前
不要太信任Cursor,这位网友被删库了。。。
人工智能·aigc·cursor·部署mcp
说私域1 小时前
基于定制开发开源 AI 智能名片 S2B2C 商城小程序的热点与人工下发策略研究
人工智能·小程序
GoGeekBaird2 小时前
GoHumanLoopHub开源上线,开启Agent人际协作新方式
人工智能·后端·github
Jinkxs2 小时前
测试工程师的AI转型指南:从工具使用到测试策略重构
人工智能·重构
别惹CC3 小时前
Spring AI 进阶之路01:三步将 AI 整合进 Spring Boot
人工智能·spring boot·spring
stbomei5 小时前
当 AI 开始 “理解” 情感:情感计算技术正在改写人机交互规则
人工智能·人机交互
Moshow郑锴10 小时前
人工智能中的(特征选择)数据过滤方法和包裹方法
人工智能
TY-202510 小时前
【CV 目标检测】Fast RCNN模型①——与R-CNN区别
人工智能·目标检测·目标跟踪·cnn
CareyWYR11 小时前
苹果芯片Mac使用Docker部署MinerU api服务
人工智能