RNN 和 Transformer 复杂度比较

这里假设BatchSize为 1,就是单样本的情况。

原始 RNN 块:

(1)单步计算 H,包含两个矩阵向量乘法,和一个激活,复杂度HidSize²

(2)一共有SeqLen步,所以整体复杂度SeqLen * HidSize²

LSTM 块:

(1)单步计算 F I C_hat O,包含八个矩阵向量乘法,和四个激活:HidSize²

(2)单步计算 C,包含两个逐元素乘法,和一个加法;HidSize²

(3)单步计算 H,包含一个逐元素乘法和一个激活;HidSize²

(4)一共有SeqLen步,所以整体复杂度SeqLen * HidSize²

TF 块:

(1)计算 QKV,包含三个矩阵乘法,SeqLen * HidSize²

(2)计算注意力矩阵,包含 HeadCount 个 矩阵乘法,HeadCount * HeadSize * SeqLen²

由于HidSize = HeadCount * HeadSize,实际上是HidSize * SeqLen²

(3)Softmax 激活,HeadCount * SeqLen² << HidSize * SeqLen²

(4)计算 O,包含HeadCount个矩阵乘法,HeadCount * HeadSize * SeqLen² = HidSize * SeqLen²

(5)计算输出向量,包含一个矩阵乘法SeqLen * HidSize²

(6)FFN ,两个矩阵乘法,SeqLen * HidSize²

(6)整体复杂度,SeqLen * HidSize² + HidSize * SeqLen²

HidSize是每层之间传输的嵌入向量的维度,大概几百维。

聊天的时候SeqLen大概几十到一百,明显低于HidSize,这个时候二者是差不多的。

长文本翻译的时候SeqLen是几千,那么 RNN 明显比 Transformer 快。

等于说,Transformer 的高复杂度缺点被并行掩盖了。在单机单卡这种不能并行的环境,效率远不如 RNN。这就是很多人一定要搞线性注意力的原因。

相关推荐
程序员Linc14 分钟前
写给新人的深度学习扫盲贴:向量与矩阵
人工智能·深度学习·矩阵·向量
xcLeigh22 分钟前
OpenCV从零开始:30天掌握图像处理基础
图像处理·人工智能·python·opencv
果冻人工智能25 分钟前
如何有效应对 RAG 中的复杂查询?
人工智能
2305_7978820934 分钟前
AI识图小程序的功能框架设计
人工智能·微信小程序·小程序
果冻人工智能35 分钟前
向量搜索中常见的8个错误(以及如何避免它们)
人工智能
碳基学AI41 分钟前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义免费下载方法
大数据·人工智能·python·gpt·算法·语言模型·集成学习
补三补四44 分钟前
机器学习-聚类分析算法
人工智能·深度学习·算法·机器学习
果冻人工智能1 小时前
法官们终于似乎明白了:如果没有复制,那就没有版权
人工智能
tle_sammy1 小时前
AI 重构老旧系统:创业新曙光
人工智能·重构
果冻人工智能1 小时前
什么是 MCP,以及你为什么该关注它
人工智能