Spark SQL基础

SparkSQL基本介绍

什么是Spark SQL

Spark SQL是Spark多种组件中其中一个,主要是用于处理大规模的结构化数据

什么是结构化数据: 一份数据, 每一行都有固定的列, 每一列的类型都是一致的 我们将这样的数据称为结构化的数据
例如: mysql的表数据
1 张三 20
2 李四 15
3 王五 18
4 赵六 12

Spark SQL 的优势

1- Spark SQL 既可以编写SQL语句, 也可以编写代码, 甚至可以混合使用
2- Spark SQL 可以 和 HIVE进行集成, 集成后, 可以替换掉HIVE原有MR的执行引擎, 提升效率

Spark SQL特点:

python 复制代码
1- 融合性: 既可以使用标准SQL语言, 也可以编写代码, 同时支持混合使用

2- 统一的数据访问: 可以通过统一的API来对接不同的数据源

3- HIVE的兼容性: Spark SQL可以和HIVE进行整合, 整合后替换执行引擎为Spark, 核心: 基于HIVE的metastore来处理

4- 标准化连接: Spark SQL也是支持 JDBC/ODBC的连接方式

Spark SQL与HIVE异同

相同点:

python 复制代码
1- 都是分布式SQL计算引擎
2- 都可以处理大规模的结构化数据
3- 都可以建立Yarn集群之上运行

不同点:

python 复制代码
1- Spark SQL是基于内存计算, 而HIVE SQL是基于磁盘进行计算的
2- Spark SQL没有元数据管理服务(自己维护), 而HIVE SQL是有metastore的元数据管理服务的
3- Spark SQL底层执行Spark RDD程序, 而HIVE SQL底层执行是MapReduce
4- Spark SQL可以编写SQL也可以编写代码,但是HIVE SQL仅能编写SQL语句

Spark SQL的数据结构对比

python 复制代码
说明:
	pandas的DataFrame: 二维表  处理单机结构数据
	Spark Core: 处理任何的数据结构   处理大规模的分布式数据
	Spark SQL: 二维表  处理大规模的分布式结构数据
python 复制代码
RDD: 存储直接就是对象, 比如在图中, 存储就是一个Person的对象, 但是里面是什么数据内容, 不太清楚

DataFrame: 将Person的中各个字段数据, 进行结构化存储, 形成一个DataFrame, 可以直接看到数据

Dataset: 将Person对象中数据都按照结构化的方式存储好, 同时保留的对象的类型, 从而知道来源于一个Person对象

由于Python不支持泛型, 所以无法使用Dataset类型, 客户端仅支持DataFrame类型

Spark SQL构建SparkSession对象

python 复制代码
from pyspark import SparkConf, SparkContext
import os
from pyspark.sql import SparkSession

# 绑定指定的Python解释器
os.environ['SPARK_HOME'] = '/export/server/spark'
os.environ['PYSPARK_PYTHON'] = '/root/anaconda3/bin/python3'
os.environ['PYSPARK_DRIVER_PYTHON'] = '/root/anaconda3/bin/python3'

if __name__ == '__main__':
    # 创建SparkSQL中的顶级对象SparkSession
    # alt+回车
    """
        注意事项:
        1- SparkSession和builder都没有小括号
        2- appName():给应用程序取名词。等同于SparkCore中的setAppName()
        3- master():设置运行时集群类型。等同于SparkCore中的setMaster()
    """
    spark = SparkSession.builder\
        .appName('create_sparksession_demo')\
        .master('local[*]')\
        .getOrCreate()

    # 通过SparkSQL的顶级对象获取SparkCore中的顶级对象
    sc = spark.sparkContext

    # 释放资源
    sc.stop()
    spark.stop()

DataFrame详解

DataFrame基本介绍

python 复制代码
DataFrame表示的是一个二维的表。二维表,必然存在行、列等表结构描述信息

表结构描述信息(元数据Schema): StructType对象
字段: StructField对象,可以描述字段名称、字段数据类型、是否可以为空
行: Row对象
列: Column对象,包含字段名称和字段值

在一个StructType对象下,由多个StructField组成,构建成一个完整的元数据信息

如何构建表结构信息数据:

DataFrame的构建方式

通过RDD得到一个DataFrame

python 复制代码
from pyspark import SparkConf, SparkContext
import os
from pyspark.sql import SparkSession

# 绑定指定的Python解释器
from pyspark.sql.types import StructType, IntegerType, StringType, StructField

os.environ['SPARK_HOME'] = '/export/server/spark'
os.environ['PYSPARK_PYTHON'] = '/root/anaconda3/bin/python3'
os.environ['PYSPARK_DRIVER_PYTHON'] = '/root/anaconda3/bin/python3'

if __name__ == '__main__':
    # 1- 创建SparkSession对象
    spark = SparkSession.builder\
        .appName('rdd_2_dataframe')\
        .master('local[*]')\
        .getOrCreate()

    # 通过SparkSession得到SparkContext
    sc = spark.sparkContext

    # 2- 数据输入
    # 2.1- 创建一个RDD
    init_rdd = sc.parallelize(["1,李白,20","2,安其拉,18"])

    # 2.2- 将RDD的数据结构转换成二维结构
    new_rdd = init_rdd.map(lambda line: (
            int(line.split(",")[0]),
            line.split(",")[1],
            int(line.split(",")[2])
        )
    )

    # 将RDD转成DataFrame:方式一
    # schema方式一
    schema = StructType()\
        .add('id',IntegerType(),False)\
        .add('name',StringType(),False)\
        .add('age',IntegerType(),False)


    # schema方式二
    schema = StructType([
        StructField('id',IntegerType(),False),
        StructField('name',StringType(),False),
        StructField('age',IntegerType(),False)
    ])

    # schema方式三
    schema = "id:int,name:string,age:int"

    # schema方式四
    schema = ["id","name","age"]

    init_df = spark.createDataFrame(
        data=new_rdd,
        schema=schema
    )

    # 将RDD转成DataFrame:方式二
    """
        toDF:中的schema既可以传List,也可以传字符串形式的schema信息
    """
    # init_df = new_rdd.toDF(schema=["id","name","age"])
    init_df = new_rdd.toDF(schema="id:int,name:string,age:int")

    # 3- 数据处理
    # 4- 数据输出
    init_df.show()
    init_df.printSchema()

    # 5- 释放资源
    sc.stop()
    spark.stop()

运行结果截图:

场景:RDD可以存储任意结构的数据;而DataFrame只能处理二维表数据。在使用Spark处理数据的初期,可能输入进来的数据是半结构化或者是非结构化的数据,那么我可以先通过RDD对数据进行ETL处理成结构化数据,再使用开发效率高的SparkSQL来对后续数据进行处理分析。

内部初始化数据得到DataFrame

python 复制代码
from pyspark import SparkConf, SparkContext
import os

# 绑定指定的Python解释器
from pyspark.sql import SparkSession

os.environ['SPARK_HOME'] = '/export/server/spark'
os.environ['PYSPARK_PYTHON'] = '/root/anaconda3/bin/python3'
os.environ['PYSPARK_DRIVER_PYTHON'] = '/root/anaconda3/bin/python3'

if __name__ == '__main__':
    print("内部初始化数据得到DataFrame。类似SparkCore中的parallelize")

    # 1- 创建SparkSession顶级对象
    spark = SparkSession.builder\
        .appName('inner_create_dataframe')\
        .master('local[*]')\
        .getOrCreate()

    # 2- 数据输入
    """
        通过createDataFrame创建DataFrame,schema数据类型可以是:DataType、字符串、List
            字符串:格式要求
                格式一 字段1 字段类型,字段2 字段类型
                格式二(推荐) 字段1:字段类型,字段2:字段类型
                
            List:格式要求
                ["字段1","字段2"]
    """
    # 内部初始化数据得到DataFrame
    init_df = spark.createDataFrame(
        data=[(1,'张三',18),(2,'李四',30)],
        schema="id:int,name:string,age:int"
    )

    # init_df = spark.createDataFrame(
    #     data=[(1, '张三', 18), (2, '李四', 30)],
    #     schema="id int,name string,age int"
    # )

    # init_df = spark.createDataFrame(
    #     data=[(1, '张三', 18), (2, '李四', 30)],
    #     schema=["id","name","age"]
    # )

    # init_df = spark.createDataFrame(
    #     data=[(1, '张三', 18), (2, '李四', 30)],
    #     schema=["id:int", "name:string", "age:int"]
    # )

    # 3- 数据处理
    # 4- 数据输出
    # 输出dataframe的数据内容
    init_df.show()

    # 输出dataframe的schema信息
    init_df.printSchema()

    # 5- 释放资源
    spark.stop()

运行结果截图:

场景:一般用在开发和测试中。因为只能处理少量的数据
Schema总结

通过createDataFrame创建DataFrame,schema数据类型可以是:DataType、字符串、List

1: 字符串

格式一 字段1 字段类型,字段2 字段类型

格式二(推荐) 字段1:字段类型,字段2:字段类型

2: List

["字段1","字段2"]

3: DataType(推荐,用的最多)

格式一 schema = StructType()

.add('id',IntegerType(),False)

.add('name',StringType(),True)

.add('age',IntegerType(),False)

格式二 schema = StructType([

StructField('id',IntegerType(),False),

StructField('name',StringType(),True),

StructField('age',IntegerType(),False)

])

读取外部文件

复杂API

统一API格式: 
sparksession.read
	.format('text|csv|json|parquet|orc|avro|jdbc|.....') # 读取外部文件的方式
	.option('k','v') # 选项  可以设置相关的参数 (可选)
	.schema(StructType | String) #  设置表的结构信息
	.load('加载数据路径') # 读取外部文件的路径, 支持 HDFS 也支持本地

简写API

格式: 
	spark.read.读取方式()
	
例如: 
	df = spark.read.csv(
   		path='file:///export/data/spark_sql/data/stu.txt',
        header=True,
        sep=' ',
        inferSchema=True,
        encoding='utf-8',
    )
Text方式读取
python 复制代码
from pyspark import SparkConf, SparkContext
import os
from pyspark.sql import SparkSession

# 绑定指定的Python解释器
os.environ['SPARK_HOME'] = '/export/server/spark'
os.environ['PYSPARK_PYTHON'] = '/root/anaconda3/bin/python3'
os.environ['PYSPARK_DRIVER_PYTHON'] = '/root/anaconda3/bin/python3'

if __name__ == '__main__':
    print("text方式读取文件")

    # 1- 创建SparkSession对象
    spark = SparkSession.builder\
        .appName('text_demo')\
        .master('local[*]')\
        .getOrCreate()

    # 2- 数据输入
    """
        load:支持读取HDFS文件系统和本地文件系统
            HDFS文件系统:hdfs://node1:8020/文件路径
            本地文件系统:file:///文件路径
            
        text方式读取文件总结:
            1- 不管文件中内容是什么样的,text会将所有内容全部放到一个列中处理
            2- 默认生成的列名叫value,数据类型string
            3- 我们只能够在schema中修改字段value的名称,其他任何内容不能修改
    """
    init_df = spark.read\
        .format('text')\
        .schema("my_field string")\
        .load('file:///export/data/stu.txt')

    # 3- 数据处理
    # 4- 数据输出
    init_df.show()
    init_df.printSchema()

    # 5- 释放资源
    spark.stop()

运行结果截图:

text方式读取文件总结:

1- 不管文件中内容是什么样的,text会将所有内容全部放到一个列中处理

2- 默认生成的列名叫value,数据类型string

3- 我们只能够在schema中修改字段value的名称,其他任何内容不能修改

CSV方式读取
python 复制代码
from pyspark import SparkConf, SparkContext
import os
from pyspark.sql import SparkSession

# 绑定指定的Python解释器
os.environ['SPARK_HOME'] = '/export/server/spark'
os.environ['PYSPARK_PYTHON'] = '/root/anaconda3/bin/python3'
os.environ['PYSPARK_DRIVER_PYTHON'] = '/root/anaconda3/bin/python3'

if __name__ == '__main__':
    print("csv方式读取文件")

    # 1- 创建SparkSession对象
    spark = SparkSession.builder\
        .appName('csv_demo')\
        .master('local[*]')\
        .getOrCreate()

    # 2- 数据输入
    """
        csv格式读取外部文件总结:
            1- 复杂API和简写API都必须掌握
            2- 相关参数作用说明:
                2.1- path:指定读取的文件路径。支持HDFS和本地文件路径
                2.2- schema:手动指定元数据信息
                2.3- sep:指定字段间的分隔符
                2.4- encoding:指定文件的编码方式
                2.5- header:指定文件中的第一行是否是字段名称
                2.6- inferSchema:根据数据内容自动推断数据类型。但是,推断结果可能不精确
    """
    # 复杂API写法
    init_df = spark.read\
        .format('csv')\
        .schema("id int,name string,address string,sex string,age int")\
        .option("sep"," ")\
        .option("encoding","UTF-8")\
        .option("header","True")\
        .load('file:///export/data/stu.txt')

    # 简写API写法
    # init_df = spark.read.csv(
    #     path='file:///export/data/gz16_pyspark/02_spark_sql/data/stu.txt',
    #     schema="id int,name string,address string,sex string,age int",
    #     sep=' ',
    #     encoding='UTF-8',
    #     header="True"
    # )

    # init_df = spark.read.csv(
    #     path='file:///export/data/stu.txt',
    #     sep=' ',
    #     encoding='UTF-8',
    #     header="True",
    #     inferSchema=True
    # )

    # 3- 数据处理
    # 4- 数据输出
    init_df.show()
    init_df.printSchema()

    # 5- 释放资源
    spark.stop()

csv格式读取外部文件总结:

1- 复杂API和简写API都必须掌握

2- 相关参数作用说明:

2.1- path:指定读取的文件路径。支持HDFS和本地文件路径

2.2- schema:手动指定元数据信息

2.3- sep:指定字段间的分隔符

2.4- encoding:指定文件的编码方式

2.5- header:指定文件中的第一行是否是字段名称

2.6- inferSchema:根据数据内容自动推断数据类型。但是,推断结果可能不精确

JSON方式读取

json的数据内容:

{'id': 1,'name': '张三','age': 20}
{'id': 2,'name': '李四','age': 23,'address': '北京'}
{'id': 3,'name': '王五','age': 25}
{'id': 4,'name': '赵六','age': 29}

代码实现

python 复制代码
from pyspark import SparkConf, SparkContext
import os
from pyspark.sql import SparkSession

# 绑定指定的Python解释器
os.environ['SPARK_HOME'] = '/export/server/spark'
os.environ['PYSPARK_PYTHON'] = '/root/anaconda3/bin/python3'
os.environ['PYSPARK_DRIVER_PYTHON'] = '/root/anaconda3/bin/python3'

if __name__ == '__main__':
    # 1- 创建SparkSession对象
    spark = SparkSession.builder\
        .appName('json_demo')\
        .master('local[*]')\
        .getOrCreate()

    # 2- 数据输入
    """
        json读取数据总结:
            1- 需要手动指定schema信息。如果手动指定的时候,字段名称与json中的key名称不一致,会解析不成功,以null值填充
            2- csv/json中schema的结构,如果是字符串类型,那么字段名称和字段数据类型间,只能以空格分隔
    """
    # init_df = spark.read.json(
    #     path='file:///export/data.txt',
    #     schema="id2 int,name string,age int,address string",
    #     encoding='UTF-8'
    # )

    # init_df = spark.read.json(
    #     path='file:///export/data.txt',
    #     schema="id:int,name:string,age:int,address:string",
    #     encoding='UTF-8'
    # )

    init_df = spark.read.json(
        path='file:///export/data.txt',
        schema="id int,name string,age int,address string",
        encoding='UTF-8'
    )
    # 3- 数据输出
    init_df.show()
    init_df.printSchema()

    # 4- 释放资源
    spark.stop()

运行结果截图:

json读取数据总结:

1- 需要手动指定schema信息。如果手动指定的时候,字段名称与json中的key名称不一致,会解析不成功,以null值填充

2- csv/json中schema的结构,如果是字符串类型,那么字段名称和字段数据类型间,只能以空格分隔

DataFrame的相关API

操作DataFrame一般有二种操作方案:一种为【DSL方式】,另一种为【SQL方式】

SQL方式: 通过编写SQL语句完成统计分析操作
DSL方式: 特定领域语言,使用DataFrame特有的API完成计算操作,也就是代码形式

从使用角度来说: SQL可能更加的方便一些,当适应了DSL写法后,你会发现DSL要比SQL更好用
从Spark角度来说: 更推荐使用DSL方案,此种方案更加利于Spark底层的优化处理

SQL相关的API

  • 创建一个视图/表

    df.createTempView('视图名称'): 创建一个临时的视图(表名)
    df.createOrReplaceTempView('视图名称'): 创建一个临时的视图(表名),如果视图存在,直接替换
    临时视图,仅能在当前这个Spark Session的会话中使用

    df.createGlobalTempView('视图名称'): 创建一个全局视图,运行在一个Spark应用中多个spark会话中都可以使用。在使用的时候必须通过 global_temp.视图名称 方式才可以加载到。较少使用

  • 执行SQL语句

    spark.sql('书写SQL')

DSL相关的API

  • show():用于展示DF中数据, 默认仅展示前20行

    • 参数1:设置默认展示多少行 默认为20
    • 参数2:是否为阶段列, 默认仅展示前20个字符数据, 如果过长, 不展示(一般不设置)
  • printSchema():用于打印当前这个DF的表结构信息

  • select():类似于SQL中select, SQL中select后面可以写什么, 这样同样也一样

  • filter()和 where():用于对数据进行过滤操作, 一般在spark SQL中主要使用where

  • groupBy():用于执行分组操作

  • orderBy():用于执行排序操作

    DSL主要支持以下几种传递的方式: str | Column对象 | 列表
    str格式: '字段'
    Column对象:
    DataFrame含有的字段 df['字段']
    执行过程新产生: F.col('字段')
    列表:
    ['字段1','字段2'...]
    [df['字段1'],df['字段2']]




为了能够支持在编写Spark SQL的DSL时候,在DSL中使用SQL函数,专门提供一个SQL的函数库。直接加载使用即可

导入这个函数库: import pyspark.sql.functions as F
通过F调用对应的函数即可。SparkSQL中所支持的函数,都可以通过以下地址查询到: 

https://spark.apache.org/docs/3.1.2/api/sql/index.html
相关推荐
Json_181790144803 小时前
An In-depth Look into the 1688 Product Details Data API Interface
大数据·json
lzhlizihang3 小时前
【spark的集群模式搭建】Standalone集群模式的搭建(简单明了的安装教程)
spark·standalone模式·spark集群搭建
Frank牛蛙4 小时前
1.每日SQL----2024/11/7
数据库·sql
上海_彭彭4 小时前
【提效工具开发】Python功能模块执行和 SQL 执行 需求整理
开发语言·python·sql·测试工具·element
Qspace丨轻空间5 小时前
气膜场馆:推动体育文化旅游创新发展的关键力量—轻空间
大数据·人工智能·安全·生活·娱乐
Elastic 中国社区官方博客6 小时前
如何将数据从 AWS S3 导入到 Elastic Cloud - 第 3 部分:Elastic S3 连接器
大数据·elasticsearch·搜索引擎·云计算·全文检索·可用性测试·aws
Aloudata7 小时前
从Apache Atlas到Aloudata BIG,数据血缘解析有何改变?
大数据·apache·数据血缘·主动元数据·数据链路
水豚AI课代表7 小时前
分析报告、调研报告、工作方案等的提示词
大数据·人工智能·学习·chatgpt·aigc
成富9 小时前
文本转SQL(Text-to-SQL),场景介绍与 Spring AI 实现
数据库·人工智能·sql·spring·oracle