基于深度学习的婴儿啼哭识别项目详解
- 基于深度学习的婴儿啼哭识别项目详解
-
- 一、项目背景
-
- [1.1 项目背景](#1.1 项目背景)
- [1.2 数据说明](#1.2 数据说明)
- 二、PaddleSpeech环境准备
- 三、数据预处理
-
- [3.1 数据解压缩](#3.1 数据解压缩)
- [3.2 查看声音文件](#3.2 查看声音文件)
- [3.3 音频文件长度处理](#3.3 音频文件长度处理)
- 四、自定义数据集与模型训练
-
- [4.1 自定义数据集](#4.1 自定义数据集)
- [4.2 模型训练](#4.2 模型训练)
- [4.3 模型训练](#4.3 模型训练)
- 五、模型测试
- 六、注意事项
基于深度学习的婴儿啼哭识别项目详解
一、项目背景
婴儿啼哭声是婴儿沟通需求的重要信号,对于父母和护理者而言至关重要。本项目基于PaddleSpeech框架,致力于构建婴儿啼哭识别系统,通过深度学习将啼哭声翻译成成人语言,帮助理解婴儿的需求和状态。
1.1 项目背景
婴儿啼哭声是一种生物报警器,传递婴儿的生理和心理需求。有效地识别啼哭声有助于提高婴儿护理的效率和质量。
1.2 数据说明
项目使用六类人工添加噪声的哭声作为训练数据集,分别代表不同的婴儿需求,如苏醒、换尿布、要抱抱、饥饿、困乏、不舒服。噪声数据来自Noisex-92标准数据库。
二、PaddleSpeech环境准备
安装PaddleSpeech和PaddleAudio,确保环境准备就绪。
python
!python -m pip install -q -U pip --user
!pip install paddlespeech paddleaudio -U -q
三、数据预处理
3.1 数据解压缩
解压缩训练数据集,获取音频文件。
python
!unzip -qoa data/data41960/dddd.zip
3.2 查看声音文件
通过可视化展示音频波形,了解样本数据的特征。
python
from paddleaudio import load
data, sr = load(file='train/awake/awake_0.wav', mono=True, dtype='float32')
print('wav shape: {}'.format(data.shape))
print('sample rate: {}'.format(sr))
plt.figure()
plt.plot(data)
plt.show()
3.3 音频文件长度处理
统一音频文件长度,确保训练数据格式一致。
python
# 音频信息查看
import soundfile as sf
import numpy as np
import librosa
data, samplerate = sf.read('hungry_0.wav')
channels = len(data.shape)
length_s = len(data) / float(samplerate)
format_rate = 16000
print(f"channels: {channels}")
print(f"length_s: {length_s}")
print(f"samplerate: {samplerate}")
四、自定义数据集与模型训练
4.1 自定义数据集
创建自定义数据集类,包含六类婴儿需求的音频文件。
python
class CustomDataset(AudioClassificationDataset):
# List all the class labels
label_list = [
'awake',
'diaper',
'hug',
'hungry',
'sleepy',
'uncomfortable'
]
train_data_dir = './train/'
def __init__(self, **kwargs):
files, labels = self._get_data()
super(CustomDataset, self).__init__(
files=files, labels=labels, feat_type='raw', **kwargs)
# 返回音频文件、label值
def _get_data(self):
'''
This method offer information of wave files and labels.
'''
files = []
labels = []
for i in range(len(self.label_list)):
single_class_path = os.path.join(self.train_data_dir, self.label_list[i])
for sound in os.listdir(single_class_path):
if 'wav' in sound:
sound = os.path.join(single_class_path, sound)
files.append(sound)
labels.append(i)
return files, labels
4.2 模型训练
选取预训练模型作为特征提取器,构建分类模型进行模型训练。
python
# 选取cnn14作为 backbone,用于提取音频的特征
from paddlespeech.cls.models import cnn14
backbone = cnn14(pretrained=True, extract_embedding=True)
# 构建分类模型
class SoundClassifier(nn.Layer):
def __init__(self, backbone, num_class, dropout=0.1):
super().__init__()
self.backbone = backbone
self.dropout = nn.Dropout(dropout)
self.fc = nn.Linear(self.backbone.emb_size, num_class)
def forward(self, x):
x = x.unsqueeze(1)
x = self.backbone(x)
x = self.dropout(x)
logits = self.fc(x)
return logits
model = SoundClassifier(backbone, num_class=len(train_ds.label_list))
4.3 模型训练
定义优化器和损失函数,进行模型训练。
python
# 定义优化器和 Loss
optimizer = paddle.optimizer.Adam(learning_rate=1e-4, parameters=model.parameters())
criterion = paddle.nn.loss.CrossEntropyLoss()
# 模型训练
epochs = 20
steps_per_epoch = len(train_loader)
log_freq = 10
eval_freq = 10
for epoch in range(1, epochs + 1):
model.train()
avg_loss = 0
num_corrects = 0
num_samples = 0
for batch_idx, batch in enumerate(train_loader):
waveforms, labels = batch
feats = feature_extractor(waveforms)
feats = paddle.transpose(feats, [0, 2, 1])
logits = model(feats)
loss = criterion(logits, labels)
loss.backward()
optimizer.step()
if isinstance(optimizer._learning_rate, paddle.optimizer.lr.LRScheduler):
optimizer._learning_rate.step()
optimizer.clear_grad()
# 计算损失
avg_loss += loss.numpy()[0]
# 计算指标
preds = paddle.argmax(logits, axis=1)
num_corrects += (preds == labels).numpy().sum()
num_samples += feats.shape[0]
if (batch_idx + 1) % log_freq == 0:
lr = optimizer.get_lr()
avg_loss /= log_freq
avg_acc = num_corrects / num_samples
print_msg = 'Epoch={}/{}, Step={}/{}'.format(
epoch, epochs, batch_idx + 1, steps_per_epoch)
print_msg += ' loss={:.4f}'.format(avg_loss)
print_msg += ' acc={:.4f}'.format(avg_acc)
print_msg += ' lr={:.6f}'.format(lr)
logger.train(print_msg)
avg_loss = 0
num_corrects = 0
num_samples = 0
五、模型测试
通过模型对测试音频进行推理,输出对应的婴儿需求概率。
python
# 模型测试
top_k = 3
wav_file = 'test/test_0.wav'
n_fft = 1024
win_length = 1024
hop_length = 320
f_min = 50.0
f_max = 16000.0
waveform, sr = load(wav_file, sr=sr)
feature_extractor = LogMelSpectrogram(
sr=sr,
n_fft=n_fft,
hop_length=hop_length,
win_length=win_length,
window='hann',
f_min=f_min,
f_max=f_max,
n_mels=64)
feats = feature_extractor(paddle.to_tensor(paddle.to_tensor(waveform).unsqueeze(0)))
feats = paddle.transpose(feats, [0, 2, 1])
logits = model(feats)
probs = nn.functional.softmax(logits, axis=1).numpy()
sorted_indices = probs[0].argsort()
msg = f'[{wav_file}]\n'
for idx in sorted_indices[-1:-top_k-1:-1]:
msg += f'{train_ds.label_list[idx]}: {probs[0][idx]:.5f}\n'
print(msg)
六、注意事项
- 自定义数据集格式参考文档;
- 统一音频尺寸,确保音频长度和采样频率一致;
- 可学习PaddleSpeech课程。