初探Spark SQL catalog缓存机制

先说结论:Spark SQL catalog中对表结构的缓存一般不会自动更新。

实验如下:

  1. 在pg中新建一张表t1,其中只有一列 c1 int
  2. 在Spark SQL中注册这张表,并从中查询数据
    1. ./bin/spark-sql --driver-class-path postgresql-42.7.1.jar --jars postgresql-42.7.1.jar
    2. spark-sql (default)> create table c1v using org.apache.spark.sql.jdbc options (url "jdbc:postgresql://localhost:5432/postgres", dbtable "public.t1", user 'postgres', password 'postgres');
    3. spark-sql (default)> select * from c1v;
    4. 结果:一行数据
  3. 在pg中为t1新增一列 c2,并插入一行数据2,2
  4. 在Spark SQL中继续查询数据
    1. spark-sql (default)> select * from c1v;
    2. 结果:两行数据,但是没有c2列
  5. 在pg中删掉c1列
  6. 在Spark SQL中继续查询数据
    1. spark-sql (default)> select * from c1v;
    2. 结果:报错 c1列不存在
  7. 从pg的query log中也可以看到,Spark一直发送的都是 SELECT "c1" FROM public.wkt,也即Spark对上述表结构的变化一无所知。

Spark报错如下

复制代码
spark-sql (default)> select * from c1v;
24/01/09 20:18:04 ERROR Executor: Exception in task 0.0 in stage 5.0 (TID 5)
org.postgresql.util.PSQLException: ERROR: column "c1" does not exist
  Hint: Perhaps you meant to reference the column "wkt.c2".
  Position: 8
        at org.postgresql.core.v3.QueryExecutorImpl.receiveErrorResponse(QueryExecutorImpl.java:2712)
        at org.postgresql.core.v3.QueryExecutorImpl.processResults(QueryExecutorImpl.java:2400)
        at org.postgresql.core.v3.QueryExecutorImpl.execute(QueryExecutorImpl.java:367)
        at org.postgresql.jdbc.PgStatement.executeInternal(PgStatement.java:498)
        at org.postgresql.jdbc.PgStatement.execute(PgStatement.java:415)
        at org.postgresql.jdbc.PgPreparedStatement.executeWithFlags(PgPreparedStatement.java:190)
        at org.postgresql.jdbc.PgPreparedStatement.executeQuery(PgPreparedStatement.java:134)
        at org.apache.spark.sql.execution.datasources.jdbc.JDBCRDD.compute(JDBCRDD.scala:320)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:364)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:328)
        at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:364)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:328)
        at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:364)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:328)
        at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:92)
        at org.apache.spark.TaskContext.runTaskWithListeners(TaskContext.scala:161)
        at org.apache.spark.scheduler.Task.run(Task.scala:139)
        at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:554)
        at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1529)
        at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:557)
        at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1128)
        at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:628)
        at java.base/java.lang.Thread.run(Thread.java:829)
24/01/09 20:18:04 WARN TaskSetManager: Lost task 0.0 in stage 5.0 (TID 5) (172.18.203.110 executor driver): org.postgresql.util.PSQLException: ERROR: column "c1" does not exist
  Hint: Perhaps you meant to reference the column "wkt.c2".
  Position: 8
        at org.postgresql.core.v3.QueryExecutorImpl.receiveErrorResponse(QueryExecutorImpl.java:2712)
        at org.postgresql.core.v3.QueryExecutorImpl.processResults(QueryExecutorImpl.java:2400)
        at org.postgresql.core.v3.QueryExecutorImpl.execute(QueryExecutorImpl.java:367)
        at org.postgresql.jdbc.PgStatement.executeInternal(PgStatement.java:498)
        at org.postgresql.jdbc.PgStatement.execute(PgStatement.java:415)
        at org.postgresql.jdbc.PgPreparedStatement.executeWithFlags(PgPreparedStatement.java:190)
        at org.postgresql.jdbc.PgPreparedStatement.executeQuery(PgPreparedStatement.java:134)
        at org.apache.spark.sql.execution.datasources.jdbc.JDBCRDD.compute(JDBCRDD.scala:320)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:364)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:328)
        at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:364)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:328)
        at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:364)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:328)
        at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:92)
        at org.apache.spark.TaskContext.runTaskWithListeners(TaskContext.scala:161)
        at org.apache.spark.scheduler.Task.run(Task.scala:139)
        at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:554)
        at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1529)
        at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:557)
        at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1128)
        at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:628)
        at java.base/java.lang.Thread.run(Thread.java:829)

24/01/09 20:18:04 ERROR TaskSetManager: Task 0 in stage 5.0 failed 1 times; aborting job
Job aborted due to stage failure: Task 0 in stage 5.0 failed 1 times, most recent failure: Lost task 0.0 in stage 5.0 (TID 5) (172.18.203.110 executor driver): org.postgresql.util.PSQLException: ERROR: column "c1" does not exist
  Hint: Perhaps you meant to reference the column "wkt.c2".
  Position: 8
        at org.postgresql.core.v3.QueryExecutorImpl.receiveErrorResponse(QueryExecutorImpl.java:2712)
        at org.postgresql.core.v3.QueryExecutorImpl.processResults(QueryExecutorImpl.java:2400)
        at org.postgresql.core.v3.QueryExecutorImpl.execute(QueryExecutorImpl.java:367)
        at org.postgresql.jdbc.PgStatement.executeInternal(PgStatement.java:498)
        at org.postgresql.jdbc.PgStatement.execute(PgStatement.java:415)
        at org.postgresql.jdbc.PgPreparedStatement.executeWithFlags(PgPreparedStatement.java:190)
        at org.postgresql.jdbc.PgPreparedStatement.executeQuery(PgPreparedStatement.java:134)
        at org.apache.spark.sql.execution.datasources.jdbc.JDBCRDD.compute(JDBCRDD.scala:320)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:364)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:328)
        at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:364)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:328)
        at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:364)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:328)
        at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:92)
        at org.apache.spark.TaskContext.runTaskWithListeners(TaskContext.scala:161)
        at org.apache.spark.scheduler.Task.run(Task.scala:139)
        at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:554)
        at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1529)
        at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:557)
        at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1128)
        at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:628)
        at java.base/java.lang.Thread.run(Thread.java:829)

Driver stacktrace:
org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 5.0 failed 1 times, most recent failure: Lost task 0.0 in stage 5.0 (TID 5) (172.18.203.110 executor driver): org.postgresql.util.PSQLException: ERROR: column "c1" does not exist
  Hint: Perhaps you meant to reference the column "wkt.c2".
  Position: 8
        at org.postgresql.core.v3.QueryExecutorImpl.receiveErrorResponse(QueryExecutorImpl.java:2712)
        at org.postgresql.core.v3.QueryExecutorImpl.processResults(QueryExecutorImpl.java:2400)
        at org.postgresql.core.v3.QueryExecutorImpl.execute(QueryExecutorImpl.java:367)
        at org.postgresql.jdbc.PgStatement.executeInternal(PgStatement.java:498)
        at org.postgresql.jdbc.PgStatement.execute(PgStatement.java:415)
        at org.postgresql.jdbc.PgPreparedStatement.executeWithFlags(PgPreparedStatement.java:190)
        at org.postgresql.jdbc.PgPreparedStatement.executeQuery(PgPreparedStatement.java:134)
        at org.apache.spark.sql.execution.datasources.jdbc.JDBCRDD.compute(JDBCRDD.scala:320)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:364)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:328)
        at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:364)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:328)
        at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:364)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:328)
        at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:92)
        at org.apache.spark.TaskContext.runTaskWithListeners(TaskContext.scala:161)
        at org.apache.spark.scheduler.Task.run(Task.scala:139)
        at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:554)
        at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1529)
        at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:557)
        at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1128)
        at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:628)
        at java.base/java.lang.Thread.run(Thread.java:829)

Driver stacktrace:
        at org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:2785)
        at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:2721)
        at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:2720)
        at scala.collection.immutable.List.foreach(List.scala:333)
        at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2720)
        at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1(DAGScheduler.scala:1206)
        at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1$adapted(DAGScheduler.scala:1206)
        at scala.Option.foreach(Option.scala:437)
        at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:1206)
        at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2984)
        at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2923)
        at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2912)
        at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
        at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:971)
        at org.apache.spark.SparkContext.runJob(SparkContext.scala:2263)
        at org.apache.spark.SparkContext.runJob(SparkContext.scala:2284)
        at org.apache.spark.SparkContext.runJob(SparkContext.scala:2303)
        at org.apache.spark.SparkContext.runJob(SparkContext.scala:2328)
        at org.apache.spark.rdd.RDD.$anonfun$collect$1(RDD.scala:1019)
        at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
        at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
        at org.apache.spark.rdd.RDD.withScope(RDD.scala:405)
        at org.apache.spark.rdd.RDD.collect(RDD.scala:1018)
        at org.apache.spark.sql.execution.SparkPlan.executeCollect(SparkPlan.scala:448)
        at org.apache.spark.sql.execution.SparkPlan.executeCollectPublic(SparkPlan.scala:475)
        at org.apache.spark.sql.execution.HiveResult$.hiveResultString(HiveResult.scala:76)
        at org.apache.spark.sql.hive.thriftserver.SparkSQLDriver.$anonfun$run$2(SparkSQLDriver.scala:69)
        at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$6(SQLExecution.scala:118)
        at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:195)
        at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:103)
        at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:827)
        at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:65)
        at org.apache.spark.sql.hive.thriftserver.SparkSQLDriver.run(SparkSQLDriver.scala:69)
        at org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver.processCmd(SparkSQLCLIDriver.scala:415)
        at org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver.$anonfun$processLine$1(SparkSQLCLIDriver.scala:533)
        at org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver.$anonfun$processLine$1$adapted(SparkSQLCLIDriver.scala:527)
        at scala.collection.IterableOnceOps.foreach(IterableOnce.scala:563)
        at scala.collection.IterableOnceOps.foreach$(IterableOnce.scala:561)
        at scala.collection.AbstractIterable.foreach(Iterable.scala:926)
        at org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver.processLine(SparkSQLCLIDriver.scala:527)
        at org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver$.main(SparkSQLCLIDriver.scala:307)
        at org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver.main(SparkSQLCLIDriver.scala)
        at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
        at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
        at java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
        at java.base/java.lang.reflect.Method.invoke(Method.java:566)
        at org.apache.spark.deploy.JavaMainApplication.start(SparkApplication.scala:52)
        at org.apache.spark.deploy.SparkSubmit.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:1020)
        at org.apache.spark.deploy.SparkSubmit.doRunMain$1(SparkSubmit.scala:192)
        at org.apache.spark.deploy.SparkSubmit.submit(SparkSubmit.scala:215)
        at org.apache.spark.deploy.SparkSubmit.doSubmit(SparkSubmit.scala:91)
        at org.apache.spark.deploy.SparkSubmit$$anon$2.doSubmit(SparkSubmit.scala:1111)
        at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:1120)
        at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Caused by: org.postgresql.util.PSQLException: ERROR: column "c1" does not exist
  Hint: Perhaps you meant to reference the column "wkt.c2".
  Position: 8
        at org.postgresql.core.v3.QueryExecutorImpl.receiveErrorResponse(QueryExecutorImpl.java:2712)
        at org.postgresql.core.v3.QueryExecutorImpl.processResults(QueryExecutorImpl.java:2400)
        at org.postgresql.core.v3.QueryExecutorImpl.execute(QueryExecutorImpl.java:367)
        at org.postgresql.jdbc.PgStatement.executeInternal(PgStatement.java:498)
        at org.postgresql.jdbc.PgStatement.execute(PgStatement.java:415)
        at org.postgresql.jdbc.PgPreparedStatement.executeWithFlags(PgPreparedStatement.java:190)
        at org.postgresql.jdbc.PgPreparedStatement.executeQuery(PgPreparedStatement.java:134)
        at org.apache.spark.sql.execution.datasources.jdbc.JDBCRDD.compute(JDBCRDD.scala:320)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:364)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:328)
        at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:364)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:328)
        at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:364)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:328)
        at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:92)
        at org.apache.spark.TaskContext.runTaskWithListeners(TaskContext.scala:161)
        at org.apache.spark.scheduler.Task.run(Task.scala:139)
        at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:554)
        at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1529)
        at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:557)
        at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1128)
        at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:628)
        at java.base/java.lang.Thread.run(Thread.java:829)

进一步对Spark SQL的报错进行分析,可见报错点是在org.apache.spark.sql.execution.datasources.jdbc.JDBCRDD.compute(JDBCRDD.scala:320)。从代码中可见,Spark直接使用catalog中缓存的表结构拼接SQL语句下发,直到SQL语句真正被pg执行时,才识别到c1这一列已经不存在的错误。

复制代码
    var builder = dialect
      .getJdbcSQLQueryBuilder(options)
      .withColumns(columns)
      .withPredicates(predicates, part)
      .withSortOrders(sortOrders)
      .withLimit(limit)
      .withOffset(offset)

    groupByColumns.foreach { groupByKeys =>
      builder = builder.withGroupByColumns(groupByKeys)
    }

    sample.foreach { tableSampleInfo =>
      builder = builder.withTableSample(tableSampleInfo)
    }

    val sqlText = builder.build()
    stmt = conn.prepareStatement(sqlText,
        ResultSet.TYPE_FORWARD_ONLY, ResultSet.CONCUR_READ_ONLY)
    stmt.setFetchSize(options.fetchSize)
    stmt.setQueryTimeout(options.queryTimeout)
    rs = stmt.executeQuery()
相关推荐
编程彩机2 小时前
互联网大厂Java面试:从分布式架构到大数据场景解析
java·大数据·微服务·spark·kafka·分布式事务·分布式架构
Moshow郑锴11 小时前
Spark在银行系统ETL中的实战应用:TXT文件到PostgreSQL的余额处理全流程
postgresql·spark·etl
petrel201513 小时前
【Spark 核心内参】2026.1:JIRA vs GitHub Issues 治理模式大讨论与 4.2.0 预览版首发
大数据·spark
petrel201513 小时前
【Spark 核心内参】2025.9:预览版常态化与数据类型的重构
大数据·spark
bigdata-rookie13 小时前
Spark shuffle 和 MapReduce shuffle 的区别
大数据·spark·mapreduce
B站计算机毕业设计超人14 小时前
计算机毕业设计hadoop+spark+hive在线教育可视化 课程推荐系统 大数据毕业设计(源码+LW文档+PPT+讲解)
大数据·人工智能·hive·hadoop·scrapy·spark·课程设计
B站计算机毕业设计超人14 小时前
计算机毕业设计PySpark+Hive+Django小红书评论情感分析 小红书笔记可视化 小红书舆情分析预测系统 大数据毕业设计(源码+LW+PPT+讲解)
大数据·人工智能·hive·爬虫·python·spark·课程设计
uesowys14 小时前
Apache Spark算法开发指导-Random forest classifier
算法·随机森林·spark
张小凡vip1 天前
数据挖掘(十)---python操作Spark常用命令
python·数据挖掘·spark
uesowys1 天前
Apache Spark算法开发指导-Decision tree classifier
算法·决策树·spark