自定义 bert 在 onnxruntime 推理错误:TypeError: run(): incompatible function arguments

自定义 bert 在 onnxruntime 推理错误:TypeError: run(): incompatible function arguments

自定义 bert 在 onnxruntime 推理错误:TypeError: run(): incompatible function arguments

推理代码

    # text embedding
    toks = self.tokenizer([text])
    if self.debug:
        print('toks', toks)

    text_embed = self.text_model_session.run(output_names=['output'], input_feed=toks)

错误提示

Traceback (most recent call last):
  File "/xx/workspace/model/test_onnx.py", line 90, in <module>
    res = inferencer.inference(text, img_path)
  File "/xx/workspace/model/test_onnx.py", line 58, in inference
    text_embed = self.text_model_session.run(output_names=['output'], input_feed=toks)
  File "/xx/miniconda3/envs/py39/lib/python3.9/site-packages/onnxruntime/capi/onnxruntime_inference_collection.py", line 220, in run
    return self._sess.run(output_names, input_feed, run_options)
TypeError: run(): incompatible function arguments. The following argument types are supported:
    1. (self: onnxruntime.capi.onnxruntime_pybind11_state.InferenceSession, arg0: List[str], arg1: Dict[str, object], arg2: onnxruntime.capi.onnxruntime_pybind11_state.RunOptions) -> List[object]

Invoked with: <onnxruntime.capi.onnxruntime_pybind11_state.InferenceSession object at 0x7f975ded1570>, ['output'], {'input_ids': array([[ 101, 3899,  102]]), 'token_type_ids': array([[0, 0, 0]]), 'attention_mask': array([[1, 1, 1]])}, None

核心错误

TypeError: run(): incompatible function arguments. The following argument types are supported:
    1. (self: onnxruntime.capi.onnxruntime_pybind11_state.InferenceSession, arg0: List[str], arg1: Dict[str, object], arg2: onnxruntime.capi.onnxruntime_pybind11_state.RunOptions) -> List[object]

解决方法

核对参数

arg0: List[str]

arg1: Dict[str, object]

对应的参数

output_names=['output'], input_feed=toks

arg0=['output'] 参数类型正确

arg1=toks 表面看参数也正常,打印看看toks的每个值的类型

type(toks['input_ids']) 输出为 <class 'torch.Tensor'>, 实际需要输入类型为 <class 'numpy.ndarray'>

修改代码

    # text embedding
    toks = self.tokenizer([text])
    if self.debug:
        print('toks', toks)
    
    text_input = {}
    text_input['input_ids'] = toks['input_ids'].numpy()
    text_input['token_type_ids'] = toks['token_type_ids'].numpy()
    text_input['attention_mask'] = toks['attention_mask'].numpy()
    text_embed = self.text_model_session.run(output_names=['output'], input_feed=text_input)

再次执行代码,正常运行,无报错!!

相关推荐
迅易科技30 分钟前
借助腾讯云质检平台的新范式,做工业制造企业质检的“AI慧眼”
人工智能·视觉检测·制造
古希腊掌管学习的神1 小时前
[机器学习]XGBoost(3)——确定树的结构
人工智能·机器学习
ZHOU_WUYI2 小时前
4.metagpt中的软件公司智能体 (ProjectManager 角色)
人工智能·metagpt
靴子学长3 小时前
基于字节大模型的论文翻译(含免费源码)
人工智能·深度学习·nlp
AI_NEW_COME4 小时前
知识库管理系统可扩展性深度测评
人工智能
海棠AI实验室4 小时前
AI的进阶之路:从机器学习到深度学习的演变(一)
人工智能·深度学习·机器学习
hunteritself4 小时前
AI Weekly『12月16-22日』:OpenAI公布o3,谷歌发布首个推理模型,GitHub Copilot免费版上线!
人工智能·gpt·chatgpt·github·openai·copilot
IT古董5 小时前
【机器学习】机器学习的基本分类-强化学习-策略梯度(Policy Gradient,PG)
人工智能·机器学习·分类
centurysee5 小时前
【最佳实践】Anthropic:Agentic系统实践案例
人工智能
mahuifa5 小时前
混合开发环境---使用编程AI辅助开发Qt
人工智能·vscode·qt·qtcreator·编程ai