【Python机器学习】理论知识:决策树

决策树是广泛用于分类和回归任务的模型,本质上是从一层层if/else问题中进行学习,并得出结论。这些问题类似于"是不是"中可能问到的问题。

决策树的每个结点代表一个问题或一个包含答案的终结点(叶结点)。树的边奖问题的答案与将问的下一个问题连接起来。

用机器学习的语言来说,,为了得到预测结果,利用多个特征构建一个模型,可以利用监督学习从数据中学习模型,而不需要人为构建模型。

学习决策树,就是学习一系列if/else问题,使我们能够最快的速度得到正确答案。在机器学习中,这些问题就叫做测试。数据通常不具有二元特征(是/否),而是表现为连续特征。为了构造决策树,算法搜遍所有可能得测试,找到对目标变量来说信息量最大的一个。

顶结点(也叫根结点)表示整个数据集,包含属于类别0的所有点和类别1的所有点,通过测试的真假来对数据集进行区分。递归生成二元决策树,其中每个结点都包含一个测试。

对数据反复进行递归,直到划分后的每个区域都只包含单一目标值(单一类别或单一回归值)。如果树中某个叶结点包含的数据点的目标值都相同,那么这个叶结点就是纯的。

想要对新的数据点进行预测,首先要查看这个点位于特征空间划分的哪个区域,然后将该区域的多数目标值作为预测结果。从根结点开始对树进行遍历就可以找到这个区域,每一步向左还是向右取决于是否满足相应的测试。

决策树也可以用于回归任务,使用的方法相同。预测的方法是基于每个结点的测试对树进行遍历,最终找到新数据点所属的叶结点,这个数据点的输出也就是这个叶结点中所有训练点的平均目标值。

相关推荐
老胖闲聊23 分钟前
Python Copilot【代码辅助工具】 简介
开发语言·python·copilot
Blossom.11827 分钟前
使用Python和Scikit-Learn实现机器学习模型调优
开发语言·人工智能·python·深度学习·目标检测·机器学习·scikit-learn
曹勖之1 小时前
基于ROS2,撰写python脚本,根据给定的舵-桨动力学模型实现动力学更新
开发语言·python·机器人·ros2
lyaihao2 小时前
使用python实现奔跑的线条效果
python·绘图
郄堃Deep Traffic2 小时前
机器学习+城市规划第十四期:利用半参数地理加权回归来实现区域带宽不同的规划任务
人工智能·机器学习·回归·城市规划
ai大师2 小时前
(附代码及图示)Multi-Query 多查询策略详解
python·langchain·中转api·apikey·中转apikey·免费apikey·claude4
GIS小天3 小时前
AI+预测3D新模型百十个定位预测+胆码预测+去和尾2025年6月7日第101弹
人工智能·算法·机器学习·彩票
小小爬虾3 小时前
关于datetime获取时间的问题
python
蓝婷儿4 小时前
6个月Python学习计划 Day 16 - 面向对象编程(OOP)基础
开发语言·python·学习
小喵喵生气气4 小时前
Python60日基础学习打卡Day46
深度学习·机器学习