【Python机器学习】构造决策树

通常来说,构造决策树直到所有叶结点都是纯的叶结点,但这会导致模型非常复杂,并且对于训练数据高度过拟合。

为了防止过拟合,有两种常见策略:

1、尽早停止树的生长,也叫预剪枝

2、先构造树,但随后删除或折叠信息量很少的结点,也叫后剪枝。

预剪枝的限制条件可能包含限制树的最大深度、限制叶结点的最大数目、规定一个结点中数据点的最小数目。

如果不防止过拟合:

python 复制代码
from sklearn.tree import DecisionTreeClassifier,export_graphviz
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
from sklearn.datasets import load_breast_cancer
import graphviz


plt.rcParams['font.sans-serif'] = ['SimHei']

cancer=load_breast_cancer()
X_train,X_test,y_train,y_test=train_test_split(
    cancer.data,cancer.target,stratify=cancer.target,random_state=42
)
tree=DecisionTreeClassifier(random_state=0)
tree.fit(X_train,y_train)
print('训练集score:{:.3f}'.format(tree.score(X_train,y_train)))
print('测试集score:{:.3f}'.format(tree.score(X_test,y_test)))

可以看到,训练集上精度是100%,但测试集的精度只有93.7%。

防止过拟合,比如限制决策树的深度为4:

python 复制代码
tree=DecisionTreeClassifier(max_depth=4,random_state=0)

可以看到,虽然训练集的精度下降,但是测试集的精度有所提升。

还可以用tree模块的export_graphviz函数来将树可视化。这个函数会生成一个dot文件,然后用graphviz读取这个文件并可视化(通过生成pdf文件的方式):

python 复制代码
export_graphviz(tree,out_file='tree_1.dot',class_names=['malignant','benigh'],feature_names=cancer.feature_names,impurity=False,filled=True)
with open('tree_1.dot') as f:
    dot_graph=f.read()
g=graphviz.Source(dot_graph)
g.render('决策树可视化')
相关推荐
温轻舟3 小时前
Python自动办公工具01-Excel文件编辑器
开发语言·python·编辑器·excel·温轻舟
星星上的吴彦祖3 小时前
多模态感知驱动的人机交互决策研究综述
python·深度学习·计算机视觉·人机交互
爱笑的眼睛114 小时前
PyTorch Lightning:重新定义深度学习工程实践
java·人工智能·python·ai
0思必得04 小时前
[Web自动化] HTTP/HTTPS协议
前端·python·http·自动化·网络基础·web自动化
Jay20021115 小时前
【机器学习】10 正则化 - 减小过拟合
人工智能·机器学习
rgb2gray5 小时前
增强城市数据分析:多密度区域的自适应分区框架
大数据·python·机器学习·语言模型·数据挖掘·数据分析·llm
氵文大师5 小时前
A机通过 python -m http.server 下载B机的文件
linux·开发语言·python·http
程序员爱钓鱼6 小时前
用 Python 批量生成炫酷扫光 GIF 动效
后端·python·trae
封奚泽优6 小时前
下降算法(Python实现)
开发语言·python·算法
java1234_小锋6 小时前
基于Python深度学习的车辆车牌识别系统(PyTorch2卷积神经网络CNN+OpenCV4实现)视频教程 - 自定义字符图片数据集
python·深度学习·cnn·车牌识别