【Python机器学习】构造决策树

通常来说,构造决策树直到所有叶结点都是纯的叶结点,但这会导致模型非常复杂,并且对于训练数据高度过拟合。

为了防止过拟合,有两种常见策略:

1、尽早停止树的生长,也叫预剪枝

2、先构造树,但随后删除或折叠信息量很少的结点,也叫后剪枝。

预剪枝的限制条件可能包含限制树的最大深度、限制叶结点的最大数目、规定一个结点中数据点的最小数目。

如果不防止过拟合:

python 复制代码
from sklearn.tree import DecisionTreeClassifier,export_graphviz
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
from sklearn.datasets import load_breast_cancer
import graphviz


plt.rcParams['font.sans-serif'] = ['SimHei']

cancer=load_breast_cancer()
X_train,X_test,y_train,y_test=train_test_split(
    cancer.data,cancer.target,stratify=cancer.target,random_state=42
)
tree=DecisionTreeClassifier(random_state=0)
tree.fit(X_train,y_train)
print('训练集score:{:.3f}'.format(tree.score(X_train,y_train)))
print('测试集score:{:.3f}'.format(tree.score(X_test,y_test)))

可以看到,训练集上精度是100%,但测试集的精度只有93.7%。

防止过拟合,比如限制决策树的深度为4:

python 复制代码
tree=DecisionTreeClassifier(max_depth=4,random_state=0)

可以看到,虽然训练集的精度下降,但是测试集的精度有所提升。

还可以用tree模块的export_graphviz函数来将树可视化。这个函数会生成一个dot文件,然后用graphviz读取这个文件并可视化(通过生成pdf文件的方式):

python 复制代码
export_graphviz(tree,out_file='tree_1.dot',class_names=['malignant','benigh'],feature_names=cancer.feature_names,impurity=False,filled=True)
with open('tree_1.dot') as f:
    dot_graph=f.read()
g=graphviz.Source(dot_graph)
g.render('决策树可视化')
相关推荐
rabbit_pro2 分钟前
Java使用Mybatis-Plus封装动态数据源工具类
java·python·mybatis
Learner15 分钟前
Python运算符
开发语言·python
一晌小贪欢19 分钟前
Python 精确计算:告别浮点数陷阱,decimal 模块实战指南
开发语言·python·python入门·python3·python小数·python浮点数
空城雀26 分钟前
python精通连续剧第一集:简单计算器
服务器·前端·python
sunfove27 分钟前
贝叶斯模型 (Bayesian Model) 的直觉与硬核原理
人工智能·机器学习·概率论
汽车仪器仪表相关领域33 分钟前
AI赋能智能检测,引领灯光检测新高度——NHD-6109智能全自动远近光检测仪项目实战分享
大数据·人工智能·功能测试·机器学习·汽车·可用性测试·安全性测试
斯特凡今天也很帅38 分钟前
python测试SFTP连通性
开发语言·python·ftp
sunywz41 分钟前
【JVM】(4)JVM对象创建与内存分配机制深度剖析
开发语言·jvm·python
wheelmouse778843 分钟前
如何设置VSCode打开文件Tab页签换行
java·python