【Python机器学习】构造决策树

通常来说,构造决策树直到所有叶结点都是纯的叶结点,但这会导致模型非常复杂,并且对于训练数据高度过拟合。

为了防止过拟合,有两种常见策略:

1、尽早停止树的生长,也叫预剪枝

2、先构造树,但随后删除或折叠信息量很少的结点,也叫后剪枝。

预剪枝的限制条件可能包含限制树的最大深度、限制叶结点的最大数目、规定一个结点中数据点的最小数目。

如果不防止过拟合:

python 复制代码
from sklearn.tree import DecisionTreeClassifier,export_graphviz
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
from sklearn.datasets import load_breast_cancer
import graphviz


plt.rcParams['font.sans-serif'] = ['SimHei']

cancer=load_breast_cancer()
X_train,X_test,y_train,y_test=train_test_split(
    cancer.data,cancer.target,stratify=cancer.target,random_state=42
)
tree=DecisionTreeClassifier(random_state=0)
tree.fit(X_train,y_train)
print('训练集score:{:.3f}'.format(tree.score(X_train,y_train)))
print('测试集score:{:.3f}'.format(tree.score(X_test,y_test)))

可以看到,训练集上精度是100%,但测试集的精度只有93.7%。

防止过拟合,比如限制决策树的深度为4:

python 复制代码
tree=DecisionTreeClassifier(max_depth=4,random_state=0)

可以看到,虽然训练集的精度下降,但是测试集的精度有所提升。

还可以用tree模块的export_graphviz函数来将树可视化。这个函数会生成一个dot文件,然后用graphviz读取这个文件并可视化(通过生成pdf文件的方式):

python 复制代码
export_graphviz(tree,out_file='tree_1.dot',class_names=['malignant','benigh'],feature_names=cancer.feature_names,impurity=False,filled=True)
with open('tree_1.dot') as f:
    dot_graph=f.read()
g=graphviz.Source(dot_graph)
g.render('决策树可视化')
相关推荐
五阿哥永琪1 小时前
Spring Boot 权限控制三件套:JWT 登录校验 + 拦截器 + AOP 角色注解实战
java·spring boot·python
这张生成的图像能检测吗2 小时前
Wonder3D: 跨域扩散的单图像3D重建技术
pytorch·深度学习·机器学习·计算机视觉·3d·三维重建·扩散模型
叶子丶苏2 小时前
第十七节_PySide6基本窗口控件深度补充_窗口绘图类(QPicture类) 下篇
python·pyqt
c骑着乌龟追兔子2 小时前
Day 42 复习日
python
Robot侠2 小时前
视觉语言导航从入门到精通(二)
开发语言·人工智能·python·llm·vln
AI科技星2 小时前
质量定义方程的物理数学融合与求导验证
数据结构·人工智能·算法·机器学习·重构
无限大.2 小时前
为什么玩游戏需要独立显卡?——GPU与CPU的分工协作
python·玩游戏
deephub2 小时前
llama.cpp Server 引入路由模式:多模型热切换与进程隔离机制详解
人工智能·python·深度学习·llama
wm10432 小时前
机器学习课程day01 机器学习概述
人工智能·机器学习
桓峰基因2 小时前
SCS 60.单细胞空间转录组空间聚类(SPATA2)
人工智能·算法·机器学习·数据挖掘·聚类