【Python机器学习】构造决策树

通常来说,构造决策树直到所有叶结点都是纯的叶结点,但这会导致模型非常复杂,并且对于训练数据高度过拟合。

为了防止过拟合,有两种常见策略:

1、尽早停止树的生长,也叫预剪枝

2、先构造树,但随后删除或折叠信息量很少的结点,也叫后剪枝。

预剪枝的限制条件可能包含限制树的最大深度、限制叶结点的最大数目、规定一个结点中数据点的最小数目。

如果不防止过拟合:

python 复制代码
from sklearn.tree import DecisionTreeClassifier,export_graphviz
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
from sklearn.datasets import load_breast_cancer
import graphviz


plt.rcParams['font.sans-serif'] = ['SimHei']

cancer=load_breast_cancer()
X_train,X_test,y_train,y_test=train_test_split(
    cancer.data,cancer.target,stratify=cancer.target,random_state=42
)
tree=DecisionTreeClassifier(random_state=0)
tree.fit(X_train,y_train)
print('训练集score:{:.3f}'.format(tree.score(X_train,y_train)))
print('测试集score:{:.3f}'.format(tree.score(X_test,y_test)))

可以看到,训练集上精度是100%,但测试集的精度只有93.7%。

防止过拟合,比如限制决策树的深度为4:

python 复制代码
tree=DecisionTreeClassifier(max_depth=4,random_state=0)

可以看到,虽然训练集的精度下降,但是测试集的精度有所提升。

还可以用tree模块的export_graphviz函数来将树可视化。这个函数会生成一个dot文件,然后用graphviz读取这个文件并可视化(通过生成pdf文件的方式):

python 复制代码
export_graphviz(tree,out_file='tree_1.dot',class_names=['malignant','benigh'],feature_names=cancer.feature_names,impurity=False,filled=True)
with open('tree_1.dot') as f:
    dot_graph=f.read()
g=graphviz.Source(dot_graph)
g.render('决策树可视化')
相关推荐
大学生毕业题目6 分钟前
毕业项目推荐:91-基于yolov8/yolov5/yolo11的井盖破损检测识别(Python+卷积神经网络)
python·yolo·目标检测·cnn·pyqt·井盖破损
wjykp37 分钟前
109~111集成学习
人工智能·机器学习·集成学习
XLYcmy42 分钟前
TarGuessIRefined密码生成器详细分析
开发语言·数据结构·python·网络安全·数据安全·源代码·口令安全
weixin_433417671 小时前
Canny边缘检测算法原理与实现
python·opencv·算法
梨落秋霜1 小时前
Python入门篇【元组】
android·数据库·python
i小杨1 小时前
python 项目相关
开发语言·python
weixin_462446231 小时前
使用 Tornado + systemd 搭建图片静态服务(imgserver)
开发语言·python·tornado
别多香了1 小时前
python基础之面向对象&异常捕获
开发语言·python
Silence_Jy1 小时前
Kimi K2技术报告
人工智能·python·深度学习·transformer
AI Echoes1 小时前
自定义 LangChain 文档加载器使用技巧
数据库·人工智能·python·langchain·prompt·agent