【Python机器学习】构造决策树

通常来说,构造决策树直到所有叶结点都是纯的叶结点,但这会导致模型非常复杂,并且对于训练数据高度过拟合。

为了防止过拟合,有两种常见策略:

1、尽早停止树的生长,也叫预剪枝

2、先构造树,但随后删除或折叠信息量很少的结点,也叫后剪枝。

预剪枝的限制条件可能包含限制树的最大深度、限制叶结点的最大数目、规定一个结点中数据点的最小数目。

如果不防止过拟合:

python 复制代码
from sklearn.tree import DecisionTreeClassifier,export_graphviz
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
from sklearn.datasets import load_breast_cancer
import graphviz


plt.rcParams['font.sans-serif'] = ['SimHei']

cancer=load_breast_cancer()
X_train,X_test,y_train,y_test=train_test_split(
    cancer.data,cancer.target,stratify=cancer.target,random_state=42
)
tree=DecisionTreeClassifier(random_state=0)
tree.fit(X_train,y_train)
print('训练集score:{:.3f}'.format(tree.score(X_train,y_train)))
print('测试集score:{:.3f}'.format(tree.score(X_test,y_test)))

可以看到,训练集上精度是100%,但测试集的精度只有93.7%。

防止过拟合,比如限制决策树的深度为4:

python 复制代码
tree=DecisionTreeClassifier(max_depth=4,random_state=0)

可以看到,虽然训练集的精度下降,但是测试集的精度有所提升。

还可以用tree模块的export_graphviz函数来将树可视化。这个函数会生成一个dot文件,然后用graphviz读取这个文件并可视化(通过生成pdf文件的方式):

python 复制代码
export_graphviz(tree,out_file='tree_1.dot',class_names=['malignant','benigh'],feature_names=cancer.feature_names,impurity=False,filled=True)
with open('tree_1.dot') as f:
    dot_graph=f.read()
g=graphviz.Source(dot_graph)
g.render('决策树可视化')
相关推荐
龙哥说跨境4 分钟前
如何利用指纹浏览器爬虫绕过Cloudflare的防护?
服务器·网络·python·网络爬虫
小白学大数据20 分钟前
正则表达式在Kotlin中的应用:提取图片链接
开发语言·python·selenium·正则表达式·kotlin
flashman91121 分钟前
python在word中插入图片
python·microsoft·自动化·word
菜鸟的人工智能之路24 分钟前
桑基图在医学数据分析中的更复杂应用示例
python·数据分析·健康医疗
懒大王爱吃狼2 小时前
Python教程:python枚举类定义和使用
开发语言·前端·javascript·python·python基础·python编程·python书籍
秃头佛爷3 小时前
Python学习大纲总结及注意事项
开发语言·python·学习
深度学习lover4 小时前
<项目代码>YOLOv8 苹果腐烂识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·苹果腐烂识别
API快乐传递者5 小时前
淘宝反爬虫机制的主要手段有哪些?
爬虫·python
阡之尘埃7 小时前
Python数据分析案例61——信贷风控评分卡模型(A卡)(scorecardpy 全面解析)
人工智能·python·机器学习·数据分析·智能风控·信贷风控
丕羽10 小时前
【Pytorch】基本语法
人工智能·pytorch·python