Pytorch中torch.rand()、torch.randn()、torch.randint()、torch.randperm()几个函数的说明

1. torch.rand(*sizes, out=None) -> Tensor

  • 参数

    • sizes (int...):整数序列,定义了输出张量的形状。
    • out (Tensor, 可选):输出张量。
  • 返回值

    • 一个新的张量,包含了在区间 [0, 1) 上均匀分布的随机数。
  • 用途

    • torch.rand 用于生成指定形状的张量,其元素从 [0, 1) 的均匀分布中随机抽取。这通常用于模型权重的初始化或任何需要均匀分布随机数的场景。

2. torch.randn(*sizes, out=None) -> Tensor

  • 参数

    • sizes (int...):整数序列,定义了输出张量的形状。
    • out (Tensor, 可选):输出张量。
  • 返回值

    • 一个新的张量,包含了从标准正态分布(均值为0,标准差为1)中抽取的随机数。
  • 用途

    • torch.randn 生成具有标准正态分布(高

斯分布)的随机数张量。这在需要正态分布随机数的场景下使用,如权重初始化或概率模型的输入。

3. torch.randint(low=0, high, *sizes, out=None) -> Tensor

  • 参数

    • low (int, 可选):随机整数生成的最低值(包含),默认为0。
    • high (int):随机整数生成的最高值(不包含)。
    • sizes (int...):整数序列,定义了输出张量的形状。
    • out (Tensor, 可选):输出张量。
  • 返回值

    • 一个新的张量,包含了在区间 [low, high) 上均匀分布的随机整数。
  • 用途

    • torch.randint 用于生成指定范围内的随机整数张量。常用于生成索引、随机抽样、初始化整数参数等场景。

4.torch.randperm(n, out=None) -> Tensor

  • 参数

    • n (int):生成整数序列的上限,序列将包含 [0, n)。
    • out (Tensor, 可选):输出张量。
  • 返回值

    • 一个新的张量,包含了一个长度为 n 的随机排列。
  • 用途

    • torch.randperm 生成一个0到n-1的随机排列的张量。这个函数在需要随机打乱序列或者创建没有重复元素的随机索引时非常有用,比如在分割数据集为训练集和测试集时进行随机采样。
相关推荐
东坡肘子5 分钟前
高温与奇怪的天象 | 肘子的 Swift 周报 #092
人工智能·swiftui·swift
JosieBook7 分钟前
【Java编程动手学】Java常用工具类
java·python·mysql
Green1Leaves8 分钟前
pytorch学习-11卷积神经网络(高级篇)
pytorch·学习·cnn
KaneLogger23 分钟前
视频转文字,别再反复拖进度条了
前端·javascript·人工智能
度假的小鱼25 分钟前
从 “人工编码“ 到 “AI 协同“:大模型如何重塑软件开发的效率与范式
人工智能
zm-v-159304339862 小时前
ArcGIS 水文分析升级:基于深度学习的流域洪水演进过程模拟
人工智能·深度学习·arcgis
拓端研究室3 小时前
视频讲解|核密度估计朴素贝叶斯:业务数据分类—从理论到实践
人工智能·分类·数据挖掘
灵智工坊LingzhiAI3 小时前
人体坐姿检测系统项目教程(YOLO11+PyTorch+可视化)
人工智能·pytorch·python
昨日之日20063 小时前
Video Background Remover V3版 - AI视频一键抠像/视频换背景 支持50系显卡 一键整合包下载
人工智能·音视频
SHIPKING3934 小时前
【机器学习&深度学习】什么是下游任务模型?
人工智能·深度学习·机器学习