Pytorch中torch.rand()、torch.randn()、torch.randint()、torch.randperm()几个函数的说明

1. torch.rand(*sizes, out=None) -> Tensor

  • 参数

    • sizes (int...):整数序列,定义了输出张量的形状。
    • out (Tensor, 可选):输出张量。
  • 返回值

    • 一个新的张量,包含了在区间 [0, 1) 上均匀分布的随机数。
  • 用途

    • torch.rand 用于生成指定形状的张量,其元素从 [0, 1) 的均匀分布中随机抽取。这通常用于模型权重的初始化或任何需要均匀分布随机数的场景。

2. torch.randn(*sizes, out=None) -> Tensor

  • 参数

    • sizes (int...):整数序列,定义了输出张量的形状。
    • out (Tensor, 可选):输出张量。
  • 返回值

    • 一个新的张量,包含了从标准正态分布(均值为0,标准差为1)中抽取的随机数。
  • 用途

    • torch.randn 生成具有标准正态分布(高

斯分布)的随机数张量。这在需要正态分布随机数的场景下使用,如权重初始化或概率模型的输入。

3. torch.randint(low=0, high, *sizes, out=None) -> Tensor

  • 参数

    • low (int, 可选):随机整数生成的最低值(包含),默认为0。
    • high (int):随机整数生成的最高值(不包含)。
    • sizes (int...):整数序列,定义了输出张量的形状。
    • out (Tensor, 可选):输出张量。
  • 返回值

    • 一个新的张量,包含了在区间 [low, high) 上均匀分布的随机整数。
  • 用途

    • torch.randint 用于生成指定范围内的随机整数张量。常用于生成索引、随机抽样、初始化整数参数等场景。

4.torch.randperm(n, out=None) -> Tensor

  • 参数

    • n (int):生成整数序列的上限,序列将包含 [0, n)。
    • out (Tensor, 可选):输出张量。
  • 返回值

    • 一个新的张量,包含了一个长度为 n 的随机排列。
  • 用途

    • torch.randperm 生成一个0到n-1的随机排列的张量。这个函数在需要随机打乱序列或者创建没有重复元素的随机索引时非常有用,比如在分割数据集为训练集和测试集时进行随机采样。
相关推荐
wjt1020206 分钟前
支持向量机(SVM)内容概述
人工智能·机器学习·支持向量机
不爱学英文的码字机器1 小时前
[CS创世SD NAND征文] CS创世CSNP1GCR01-AOW在运动控制卡中的高可靠应用
人工智能·嵌入式硬件·物联网·iot
chian-ocean4 小时前
Bright Data 代理 + MCP :解决 Google 搜索反爬的完整方案
人工智能·python
GIS小天5 小时前
AI+预测3D新模型百十个定位预测+胆码预测+去和尾2025年8月25日第170弹
人工智能·算法·机器学习·彩票
Ronin-Lotus7 小时前
深度学习篇--- ResNet-18
人工智能·深度学习·resnet
说私域8 小时前
基于开源 AI 智能名片链动 2+1 模式 S2B2C 商城小程序的新开非连锁品牌店开业引流策略研究
人工智能·小程序·开源
moonsims8 小时前
无人机和无人系统的计算机视觉-人工智能无人机
人工智能·计算机视觉·无人机
钓了猫的鱼儿8 小时前
无人机航拍数据集|第27期 无人机交通目标检测YOLO数据集3717张yolov11/yolov8/yolov5可训练
人工智能·yolo·目标检测
tzc_fly9 小时前
rbio1:以生物学世界模型为软验证器训练科学推理大语言模型
人工智能·语言模型·自然语言处理
AndrewHZ9 小时前
【python与生活】如何用Python写一个简单的自动整理文件的脚本?
开发语言·python·生活·脚本·文件整理