Pytorch中torch.rand()、torch.randn()、torch.randint()、torch.randperm()几个函数的说明

1. torch.rand(*sizes, out=None) -> Tensor

  • 参数

    • sizes (int...):整数序列,定义了输出张量的形状。
    • out (Tensor, 可选):输出张量。
  • 返回值

    • 一个新的张量,包含了在区间 [0, 1) 上均匀分布的随机数。
  • 用途

    • torch.rand 用于生成指定形状的张量,其元素从 [0, 1) 的均匀分布中随机抽取。这通常用于模型权重的初始化或任何需要均匀分布随机数的场景。

2. torch.randn(*sizes, out=None) -> Tensor

  • 参数

    • sizes (int...):整数序列,定义了输出张量的形状。
    • out (Tensor, 可选):输出张量。
  • 返回值

    • 一个新的张量,包含了从标准正态分布(均值为0,标准差为1)中抽取的随机数。
  • 用途

    • torch.randn 生成具有标准正态分布(高

斯分布)的随机数张量。这在需要正态分布随机数的场景下使用,如权重初始化或概率模型的输入。

3. torch.randint(low=0, high, *sizes, out=None) -> Tensor

  • 参数

    • low (int, 可选):随机整数生成的最低值(包含),默认为0。
    • high (int):随机整数生成的最高值(不包含)。
    • sizes (int...):整数序列,定义了输出张量的形状。
    • out (Tensor, 可选):输出张量。
  • 返回值

    • 一个新的张量,包含了在区间 [low, high) 上均匀分布的随机整数。
  • 用途

    • torch.randint 用于生成指定范围内的随机整数张量。常用于生成索引、随机抽样、初始化整数参数等场景。

4.torch.randperm(n, out=None) -> Tensor

  • 参数

    • n (int):生成整数序列的上限,序列将包含 [0, n)。
    • out (Tensor, 可选):输出张量。
  • 返回值

    • 一个新的张量,包含了一个长度为 n 的随机排列。
  • 用途

    • torch.randperm 生成一个0到n-1的随机排列的张量。这个函数在需要随机打乱序列或者创建没有重复元素的随机索引时非常有用,比如在分割数据集为训练集和测试集时进行随机采样。
相关推荐
2501_9307992418 分钟前
访答知识库#Pdf转word#人工智能#Al编辑器#访答RAG#企业知识库私,私有知识库,访答编辑器,个人知识库,云知识库,……
人工智能
reasonsummer19 分钟前
【办公类-115-06】20250920职称资料上传04——docx复制、docx转PDF(课程表11个)
开发语言·windows·python·c#
E_ICEBLUE20 分钟前
高效压缩 PDF 文件大小(3 大实用的 Python 库)
python·pdf
学好statistics和DS1 小时前
【CV】神经网络中哪些参数需要被学习?
人工智能·神经网络·学习
栀寒老醑1 小时前
Python实现的服务器日志监控脚本
开发语言·python
大千AI助手1 小时前
机器学习特征筛选中的IV值详解:原理、应用与实现
人工智能·机器学习·kl散度·roc·iv·信息值·woe
姜—姜1 小时前
通过构建神经网络实现项目预测
人工智能·pytorch·深度学习·神经网络
Ro Jace1 小时前
模式识别与机器学习课程笔记(4):线性判决函数
人工智能·笔记·机器学习
科研小白_2 小时前
基于遗传算法优化BP神经网络(GA-BP)的数据时序预测
人工智能·算法·回归
yaoxin5211232 小时前
211. Java 异常 - Java 异常机制总结
java·开发语言·python