分类预测 | Matlab实现RP-LSTM-Attention递归图优化长短期记忆神经网络注意力机制的数据分类预测【24年新算法】

分类预测 | Matlab实现RP-LSTM-Attention递归图优化长短期记忆神经网络注意力机制的数据分类预测【24年新算法】

目录

    • [分类预测 | Matlab实现RP-LSTM-Attention递归图优化长短期记忆神经网络注意力机制的数据分类预测【24年新算法】](#分类预测 | Matlab实现RP-LSTM-Attention递归图优化长短期记忆神经网络注意力机制的数据分类预测【24年新算法】)

分类效果




基本描述

1.Matlab实现RP-LSTM-Attention递归图优化长短期记忆神经网络注意力机制的数据分类预测【24年新算法】(完整源码和数据)

2.自带数据,多输入,单输出,多分类。图很多,包括迭代曲线图、混淆矩阵图、预测效果图等等。

3.直接替换数据即可使用,保证程序可正常运行。运行环境MATLAB2023及以上。

4.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

模型描述

递归图(recurrence plot, RP)是分析时间序列周期性、混沌性以及非平稳性的一个重要方法,可以揭示时间序列的内部结构,给出有关相似性、信息量和预测性的先验知识。递归图特别适合短时间序列数据,可以检验时间序列的平稳性、内在相似性。

RP--LSTM-Attention是一种递归图优化的长短期记忆神经网络(LSTM),同时结合了注意力机制,用于数据分类预测。这种模型在处理序列数据时能够更好地捕捉时序信息和重要特征,并提高分类性能。

程序设计

  • 完整程序和数据私信博主回复Matlab实现RP-LSTM-Attention递归图优化长短期记忆神经网络注意力机制的数据分类预测【24年新算法】
clike 复制代码
%%  参数设置
 
%% 建立模型
lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中

tempLayers = [
    sequenceUnfoldingLayer("Name", "sequnfold")                      % 建立序列反折叠层
    flattenLayer("Name", "flatten")                                  % 网络铺平层
    lstmLayer(best_hd, "Name", "lstm", "OutputMode","last")             
    fullyConnectedLayer(num_class, "Name", "fc")                     % 全连接层
    softmaxLayer("Name", "softmax")                                  % softmax激活层
    classificationLayer("Name", "classification")];                  % 分类层
lgraph = addLayers(lgraph, tempLayers);                              % 将上述网络结构加入空白结构中
lgraph = connectLayers(lgraph, "seqfold/out", "conv_1");             % 折叠层输出 连接 卷积层输入
lgraph = connectLayers(lgraph, "seqfold/miniBatchSize", "sequnfold/miniBatchSize"); 
                                                                     % 折叠层输出连接反折叠层输入
lgraph = connectLayers(lgraph, "relu_2", "sequnfold/in");            % 激活层输出 连接 反折叠层输入

%% 参数设置
options = trainingOptions('adam', ...     % Adam 梯度下降算法
    'MaxEpochs', 500,...                 % 最大训练次数 
    'InitialLearnRate', best_lr,...          % 初始学习率为0.001
    'L2Regularization', best_l2,...         % L2正则化参数
    'LearnRateSchedule', 'piecewise',...  % 学习率下降
    'LearnRateDropFactor', 0.1,...        % 学习率下降因子 0.1
    'LearnRateDropPeriod', 400,...        % 经过训练后 学习率为 0.001*0.1
    'Shuffle', 'every-epoch',...          % 每次训练打乱数据集
    'ValidationPatience', Inf,...         % 关闭验证
    'Plots', 'training-progress',...      % 画出曲线
    'Verbose', false);

%% 训练
net = trainNetwork(p_train, t_train, lgraph, options);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502

[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

相关推荐
Eshin_Ye11 天前
transformer学习笔记-自注意力机制(1)
笔记·学习·transformer·attention·注意力机制
西西弗Sisyphus16 天前
视觉语言模型 Qwen2-VL
人工智能·深度学习·大模型·注意力机制
deephub17 天前
Hymba: 结合注意力头和SSM头的创新型语言模型方案
人工智能·深度学习·transformer·注意力机制
scdifsn19 天前
动手学深度学习10.5. 多头注意力-笔记&练习(PyTorch)
pytorch·笔记·深度学习·注意力机制·多头注意力
LinKouun23 天前
论文笔记 SliceGPT: Compress Large Language Models By Deleting Rows And Columns
论文阅读·人工智能·语言模型·transformer·attention·模型压缩·注意力机制
御宇w23 天前
(即插即用模块-Attention部分) 二十、(2021) GAA 门控轴向注意力
深度学习·计算机视觉·注意力机制
机器学习之心1 个月前
多输入多输出 | Matlab实现TCN-LSTM时间卷积神经网络结合长短期记忆神经网络多输入多输出预测
神经网络·matlab·lstm·长短期记忆神经网络·tcn-lstm·时间卷积神经网络
deephub1 个月前
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
人工智能·深度学习·transformer·大语言模型·注意力机制
迪菲赫尔曼1 个月前
即插即用篇 | YOLOv11 引入高效的直方图Transformer模块 | 突破天气障碍:Histoformer引领高效图像修复新路径
人工智能·深度学习·yolo·目标检测·计算机视觉·transformer·注意力机制
scdifsn1 个月前
动手学深度学习10.1. 注意力提示-笔记&练习(PyTorch)
pytorch·笔记·深度学习·注意力机制·注意力提示