LLM论文:ALCE (Enabling Large Language Models to Generate Text with Citations)

这是一篇RAG领域的文章,原文在这:https://aclanthology.org/2023.emnlp-main.398.pdf

|---------|---------------------------------------------------------------------------------------------------------------------------|
| 时间 | [Submitted on 24 May 2023 (v1), last revised 31 Oct 2023 (this version, v2)] |
| 背景 | LLM在信息搜索、生成带引用的文本时存在幻觉问题,即事实准确性有待提升,而且用户难以验证准确性。 |
| 现有工作的不足 | 人工评估或商用搜索引擎,难以复现和比较不同模型 |
| 解决 | 提出A utomatic L LM C itation Evalutation 自动化评估模型检索生成能力 |
| 创新点 | 1. 评估长文本生成 2. 自动评估引用质量 3. 允许为一个陈述引用多篇文章 |

具体工作内容:

数据集

有三个数据集,分别是

ALCE评估模型:

三方面评估

  • 流畅度------MAUVE (Pillutla et al., 2021)
  • 正确性------根据数据集特点,定制了三种评估方式,主要使用了召回率,正确率
  • 引用质量------根据数据集特点,定制了三种评估方式,主要使用了召回率,正确率

检索生成方式

  1. vanilla:提供模型可能包含答案的文章,写提示词告诉他要正确地引用
  2. summ/snippet: 不提供完整的文章而是概要版或某一段,为了减少信息损失,还结合了INTERACT,模型可以选择是否去看一个浓缩版对应的完整的文章
  3. inlinesearch: 不提供检索结果,允许模型调用搜索
  4. closebook:不提供外部文章,让模型闭卷给出答案。
相关推荐
神经美学_茂森4 分钟前
【方法论】ChatGPT与DeepSeek的联合应用,提升工作效率的新解决方案
人工智能·chatgpt
一水鉴天11 分钟前
为AI聊天工具添加一个知识系统 之82 详细设计之23 符号逻辑 &正则表达式规则 之1
人工智能
深蓝海拓23 分钟前
基于深度学习的视觉检测小项目(十六) 用户管理界面的组态
人工智能·python·深度学习·qt·pyqt
Icomi_38 分钟前
【PyTorch】7.自动微分模块:开启神经网络 “进化之门” 的魔法钥匙
c语言·c++·人工智能·pytorch·python·机器学习·计算机视觉
沐雪架构师40 分钟前
AI大模型开发原理篇-4:神经概率语言模型NPLM
人工智能·语言模型·自然语言处理
道友老李43 分钟前
【自然语言处理(NLP)】多头注意力(Multi - Head Attention)原理及代码实现
人工智能·自然语言处理
逐梦苍穹1 小时前
神经网络的数据流动过程(张量的转换和输出)
人工智能·深度学习·神经网络
我的运维人生1 小时前
计算机视觉:解锁智能时代的钥匙与实战案例
人工智能·计算机视觉·运维开发·技术共享
MoRanzhi12032 小时前
亲和传播聚类算法应用(Affinity Propagation)
人工智能·python·机器学习·数学建模·scikit-learn·聚类
金融OG2 小时前
99.23 金融难点通俗解释:小卖部经营比喻PPI(生产者物价指数)vsCPI(消费者物价指数)
人工智能·python·机器学习·数学建模·金融·数据可视化