LLM论文:ALCE (Enabling Large Language Models to Generate Text with Citations)

这是一篇RAG领域的文章,原文在这:https://aclanthology.org/2023.emnlp-main.398.pdf

|---------|---------------------------------------------------------------------------------------------------------------------------|
| 时间 | [Submitted on 24 May 2023 (v1), last revised 31 Oct 2023 (this version, v2)] |
| 背景 | LLM在信息搜索、生成带引用的文本时存在幻觉问题,即事实准确性有待提升,而且用户难以验证准确性。 |
| 现有工作的不足 | 人工评估或商用搜索引擎,难以复现和比较不同模型 |
| 解决 | 提出A utomatic L LM C itation Evalutation 自动化评估模型检索生成能力 |
| 创新点 | 1. 评估长文本生成 2. 自动评估引用质量 3. 允许为一个陈述引用多篇文章 |

具体工作内容:

数据集

有三个数据集,分别是

ALCE评估模型:

三方面评估

  • 流畅度------MAUVE (Pillutla et al., 2021)
  • 正确性------根据数据集特点,定制了三种评估方式,主要使用了召回率,正确率
  • 引用质量------根据数据集特点,定制了三种评估方式,主要使用了召回率,正确率

检索生成方式

  1. vanilla:提供模型可能包含答案的文章,写提示词告诉他要正确地引用
  2. summ/snippet: 不提供完整的文章而是概要版或某一段,为了减少信息损失,还结合了INTERACT,模型可以选择是否去看一个浓缩版对应的完整的文章
  3. inlinesearch: 不提供检索结果,允许模型调用搜索
  4. closebook:不提供外部文章,让模型闭卷给出答案。
相关推荐
神策数据9 小时前
打造 AI Growth Team: 以 Data + AI 重塑品牌零售增长范式
人工智能·零售
2501_941333109 小时前
数字识别与检测_YOLOv3_C3k2改进模型解析
人工智能·yolo·目标跟踪
逐梦苍穹9 小时前
速通DeepSeek论文mHC:给大模型装上物理阀门的架构革命
人工智能·deepseek·mhc
运维小欣9 小时前
Agentic AI 与 Agentic Ops 驱动,智能运维迈向新高度
运维·人工智能
Honmaple10 小时前
OpenClaw 迁移指南:如何把 AI 助手搬到新电脑
人工智能
wenzhangli710 小时前
Ooder A2UI 第一性原理出发 深度解析核心逻辑
人工智能·开源
网络安全研究所10 小时前
AI安全提示词注入攻击如何操控你的智能助手?
人工智能·安全
数据猿10 小时前
硬盘价格涨疯了,AI存储何去何从?
人工智能
zhangfeng113311 小时前
氨基酸序列表示法,蛋白质序列表达 计算机中机器学习 大语言模型中的表达,为什么没有糖蛋白或者其他基团磷酸化甲基化乙酰化泛素化
人工智能·机器学习·语言模型
陈天伟教授11 小时前
人工智能应用- 语言理解:06.大语言模型
人工智能·语言模型·自然语言处理