Python爬虫---scrapy框架---当当网管道封装

项目结构:

dang.py文件:自己创建,实现爬虫核心功能的文件

python 复制代码
import scrapy
from scrapy_dangdang_20240113.items import ScrapyDangdang20240113Item


class DangSpider(scrapy.Spider):
    name = "dang"  # 名字
    # 如果是多页下载的话, 那么必须要调整的是allowed_domains的范围 一般情况下只写城名
    # allowed_domains = ["https://category.dangdang.com/cp01.01.00.00.00.00.html"]
    allowed_domains = ["category.dangdang.com"]
    start_urls = ["https://category.dangdang.com/cp01.01.00.00.00.00.html"]

    # 第1页:"https://category.dangdang.com/cp01.01.00.00.00.00.html"
    # 第2页: "https://category.dangdang.com/pg2-cp01.01.00.00.00.00.html"
    # 第3页: "https://category.dangdang.com/pg3-cp01.01.00.00.00.00.html"

    base_url = "https://category.dangdang.com/pg"
    page = 1

    def parse(self, response):
        print("========================================================================")

        # pipelines: 下载数据
        # items: 定义数据结构

        # xpath语法
        # src = //ul[@id='component_59']/li/a/img/@src
        # 除了第一张,其他做了懒加载 所以不能使用src,要使用这个data-original
        # src = //ul[@id='component_59']/li/a/img/@data-original
        # alt = //ul[@id='component_59']/li/a/img/@alt
        # price = //ul[@id='component_59']/li/p[@class='price']/span[1]/text()

        # 所有的seletor的对象都可以再次调用xpath语法
        li_list = response.xpath("//ul[@id='component_59']/li")

        for li in li_list:

            src = li.xpath(".//img/@data-original").extract_first()
            if src:
                src = src
            else:
                src = li.xpath(".//img/@src").extract_first()

            name = li.xpath(".//img/@alt").extract_first()
            price = li.xpath(".//p[@class='price']/span[1]/text()").extract_first()

            print(src, name, price)

            # 将爬取的数据放在对象里
            book = ScrapyDangdang20240113Item(src=src, name=name, price=price)

            # 获取一个book将book交给pipelines,将对象放在管道里
            yield book

            # 每一页的爬取业务的逻辑全都是一样的,所以我们只需要将执行的那个页的请求再次调用
        if self.page < 100:
            self.page = self.page + 1

            url = self.base_url + str(self.page) + "-cp01.01.00.00.00.00.html"
            # 调用parse万法
            # scrapy.Request就是scrpay的get请求 url就是请求地址
            # callback是你要执行的那个函数注意不需要加()
            yield scrapy.Request(url=url, callback=self.parse)

items文件:定义数据结构的地方

python 复制代码
import scrapy


class ScrapyDangdang20240113Item(scrapy.Item):
    # define the fields for your item here like:
    # name = scrapy.Field()
    # 通俗的说就是你要下载的数据都有什么
    src = scrapy.Field()
    name = scrapy.Field()
    price = scrapy.Field()

settings文件:配置文件,例如开启管道

python 复制代码
# 开启管道
ITEM_PIPELINES = {
    # 管道可以有很多个,那么管道是有优先级的,优先级的范围是1到1000,值越小优先级越高
    "scrapy_dangdang_20240113.pipelines.ScrapyDangdang20240113Pipeline": 300,
    "scrapy_dangdang_20240113.pipelines.DangdangDownloadPipeline": 301,
}

pipelines.py文件:管道文件,里面只有一个类,用于处理下载数据的,值越小优先级越高

python 复制代码
# 下载数据

# 如果想使用管道的话 那么就必须在settings中开启管道
class ScrapyDangdang20240113Pipeline:
    # item就是yield后面的book对象

    # 方式一:
    # 以下这种模式不推荐,因为每传递过来一个对象,那么就打开一次文件,对文件的作过于频繁
    # def process_item(self, item, spider):
    # (1)write万法必须要写一个字符串,而不能是其他的对象,使用str()强转
    # (2)w模式 会每一个对象都打开一次文件 覆盖之前的内容
    # with open("book.json","a",encoding="utf-8")as fp:
    #     fp.write(str(item))
    # return item

    # 方式二:
    # 在爬虫文件开始之前就执行的方法
    def open_spider(self, spider):
        print("++++++++++++++++++++++++++++++++++++++++++++++++++")
        self.fp = open("book.json", "w", encoding="utf-8")

    def process_item(self, item, spider):
        self.fp.write(str(item))
        return item

    # 在爬虫文件开始之后就执行的方法
    def close_spider(self, spider):
        print("----------------------------------------------------")
        self.fp.close()


# 多条管道同时开启
# (1)定义管道类
# (2)在settings中开启管道
import urllib.request
class DangdangDownloadPipeline:
    def process_item(self, item, spider):
        # 下载图片
        url = "https:" + item.get("src")
        filename = "./books/" + item.get("name")[0:6] + ".jpg"

        urllib.request.urlretrieve(url=url, filename=filename)

        return item
相关推荐
数据智能老司机8 小时前
精通 Python 设计模式——分布式系统模式
python·设计模式·架构
数据智能老司机9 小时前
精通 Python 设计模式——并发与异步模式
python·设计模式·编程语言
数据智能老司机9 小时前
精通 Python 设计模式——测试模式
python·设计模式·架构
数据智能老司机9 小时前
精通 Python 设计模式——性能模式
python·设计模式·架构
c8i9 小时前
drf初步梳理
python·django
每日AI新事件9 小时前
python的异步函数
python
这里有鱼汤10 小时前
miniQMT下载历史行情数据太慢怎么办?一招提速10倍!
前端·python
databook19 小时前
Manim实现脉冲闪烁特效
后端·python·动效
程序设计实验室20 小时前
2025年了,在 Django 之外,Python Web 框架还能怎么选?
python
倔强青铜三21 小时前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试