Spark---累加器和广播变量

文章目录

1.累加器实现原理

累加器用来把 Executor 端变量信息聚合到 Driver 端。在 Driver 程序中定义的变量,在Executor 端的每个 Task 都会得到这个变量的一份新的副本,每个 task 更新这些副本的值后,传回 Driver 端进行 merge。

    //建立与Spark框架的连接
    val wordCount = new SparkConf().setMaster("local").setAppName("WordCount") //配置文件
    val context = new SparkContext(wordCount) //读取配置文件

    val dataRdd: RDD[Int] = context.makeRDD(List(1, 2, 3, 4),2)
    var sum=0
    dataRdd.foreach(num=>sum+=num)

    println(sum)
    context.stop()

运行结果:

我们预期是想要实现数据的累加,开始数据从Driver被传输到了Executor中进行计算,但是每个分区在累加数据完成之后并没有将计算结果返回到Driver端,所以导致最后的结果与预期的不一致。

对上述代码使用累加器

    val dataRdd: RDD[Int] = context.makeRDD(List(1, 2, 3, 4))
    val sum = context.longAccumulator("sum")
    dataRdd.foreach(num=>{
      //使用累加器
      sum.add(num)
    })

    //获取累加器的值
    println(sum.value)

运行结果:

由此可见,在使用了累加器之后,每个Executor在开始都会获得这个累加器变量,每个Executor在执行完成后,累加器会将每个Executor中累加器变量的值聚合到Driver端。

Spark提供了多种类型的累加器,以下是其中的一些:

2.自定义累加器

用户可以通过继承AccumulatorV2来自定义累加器。需求:自定义累加器实现WordCount案例。

AccumulatorV2[IN,OUT]中:

IN:输入数据的类型

OUT:输出数据类型


WordCount案例实现完整代码:

package bigdata.wordcount.leijiaqi

import bigdata.wordcount.leijiaqi
import org.apache.spark.rdd.RDD
import org.apache.spark.util.AccumulatorV2
import org.apache.spark.{SparkConf, SparkContext}

import scala.collection.mutable

/**
 * 使用累加器完成WordCount案例
 */
object Spark_addDemo {
  def main(args: Array[String]): Unit = {
    //建立与Spark框架的连接
    val wordCount = new SparkConf().setMaster("local").setAppName("WordCount") //配置文件
    val context = new SparkContext(wordCount) //读取配置文件

    val dataRDD: RDD[String] = context.textFile("D:\\learnSoftWare\\IdeaProject\\Spark_Demo\\Spark_Core\\src\\main\\com.mao\\datas\\1.txt")

    //创建累加器对象
    val wordCountAccumulator = new WordCountAccumulator
    //向Spark中进行注册
    context.register(wordCountAccumulator,"wordCountAccumulator")

    //实现累加
    dataRDD.foreach(word => {
      wordCountAccumulator.add(word)
    })
    //获取累加结果,打印在控制台上
    println(wordCountAccumulator.value)

    //关闭链接
    context.stop()
  }

}

class WordCountAccumulator extends  AccumulatorV2[String,mutable.Map[String,Long]]
{

  //定义一个map用于存储累加后的结果
  var map: mutable.Map[String, Long] =mutable.Map[String,Long]()

  //累加器是否为初始状态
  override def isZero: Boolean = {
    map.isEmpty
  }

  //复制累加器
  override def copy(): AccumulatorV2[String, mutable.Map[String, Long]] = {
    new WordCountAccumulator()
  }

  //重置累加器
  override def reset(): Unit = {
    map.clear()
  }

  //向累加器添加数据IN
  override def add(word: String): Unit = {
    // 查询 map 中是否存在相同的单词
    // 如果有相同的单词,那么单词的数量加 1
    // 如果没有相同的单词,那么在 map 中增加这个单词
    val newValue = map.getOrElse(word, 0L) + 1
    map.update(word,newValue)
  }

  //合并累加器
  override def merge(other: AccumulatorV2[String, mutable.Map[String, Long]]): Unit = {
    var map1=this.map
    var map2=other.value

    //合并两个map
    map2.foreach({
      case (word,count)=>{
        val newValue = map1.getOrElse(word,0L)+count
        map1.update(word,newValue)
      }
    })
  }

  //返回累加器的结果(OUT)
  override def value: mutable.Map[String, Long] = this.map
}
}

运行结果:

3.广播变量

在Apache Spark中,广播变量(Broadcast Variables)是一种特殊类型的变量,用于优化数据共享。当Spark应用程序在集群中的多个节点上运行时,每个节点都需要访问相同的数据集。如果数据集很大,那么将这些数据发送到每个节点可能会非常耗时和低效。 广播变量提供了一种方法,可以在集群中的所有节点上共享数据集的一个只读副本 ,从而避免了在每个节点上重复发送数据。


广播变量也叫分布式只读变量,它可以将闭包数据发送到每个Executor的内存中来达到共享的目的,Executor其实就相当于一个JVM,在启动的时候会自动分配内存。

    //建立与Spark框架的连接
    val wordCount = new SparkConf().setMaster("local").setAppName("WordCount") //配置文件
    val context = new SparkContext(wordCount) //读取配置文件

    val rdd1 = context.makeRDD(List(("a", 1), ("b", 2), ("c", 3), ("d", 4)), 4)
    val list = List(("a", 4), ("b", 5), ("c", 6), ("d", 7))
    // 声明广播变量
    val broadcast: Broadcast[List[(String, Int)]] = context.broadcast(list)
    val resultRDD: RDD[(String, (Int, Int))] = rdd1.map {
      case (key, num) => {
        var num2 = 0
        // 使用广播变量
        for ((k, v) <- broadcast.value) {
          if (k == key) {
            num2 = v
          }
        }
        (key, (num, num2))
      }
    }

    resultRDD.collect().foreach(print)
    
    context.stop()
相关推荐
中科岩创几秒前
中科岩创桥梁自动化监测解决方案
大数据·网络·物联网
百家方案33 分钟前
「下载」智慧产业园区-数字孪生建设解决方案:重构产业全景图,打造虚实结合的园区数字化底座
大数据·人工智能·智慧园区·数智化园区
forestsea40 分钟前
【Elasticsearch】分片与副本机制:优化数据存储与查询性能
大数据·elasticsearch·搜索引擎
开着拖拉机回家1 小时前
【Ambari】使用 Knox 进行 LDAP 身份认证
大数据·hadoop·gateway·ambari·ldap·knox
地球资源数据云1 小时前
全国30米分辨率逐年植被覆盖度(FVC)数据集
大数据·运维·服务器·数据库·均值算法
INFINI Labs1 小时前
Elasticsearch filter context 的使用原理
大数据·elasticsearch·jenkins·filter·querycache
Ahern_2 小时前
Oracle 普通表至分区表的分区交换
大数据·数据库·sql·oracle
李昊哲小课2 小时前
deepin 安装 kafka
大数据·分布式·zookeeper·数据分析·kafka
FIN66683 小时前
张剑教授:乳腺癌小红书(2025年版)更新,芦康沙妥珠单抗成功进入TNBC二线推荐,彰显乳腺癌诊疗的“中国力量”
大数据·搜索引擎·健康医疗
core5127 小时前
flink sink doris
大数据·mysql·flink·doris·存储·sink·过程正常