讲解机器学习中的 K-均值聚类算法及其优缺点

K-均值聚类算法是一种常见且简单的无监督学习算法,用于将数据集分为K个不同的类别。其主要思想是将数据集中的每个样本点分配给离它最近的质心,然后更新质心的位置,重复此过程直到质心不再移动或达到预定的迭代次数。

K-均值聚类算法的步骤如下:

  1. 随机初始化K个质心。
  2. 将每个样本点分配给离它最近的质心。
  3. 更新质心的位置,使其成为所有分配给它的样本点的平均值。
  4. 重复步骤2和3,直到质心不再移动或达到预定的迭代次数。

K-均值聚类算法的优点包括:

  1. 简单易实现:K-均值聚类算法的原理简单,易于理解和实现。
  2. 可扩展性:它可以用于处理大规模数据集,因为算法的时间复杂度较低。

K-均值聚类算法的缺点包括:

  1. 对初始质心的敏感性:K-均值算法对初始质心的选择非常敏感,不同的初始质心可能导致不同的聚类结果。
  2. 需要预先指定K的值:K-均值算法需要预先指定聚类的簇数K,而在实际应用中通常不知道真正的簇数。
  3. 对异常值敏感:K-均值算法对异常值非常敏感,异常值可能会影响质心的位置和聚类结果。

综上所述,K-均值聚类算法是一种简单且常用的聚类算法,适用于处理大规模数据集。然而,由于对初始质心的敏感性和需要预先指定簇数K的限制,K-均值聚类算法可能在某些情况下无法得到理想的聚类结果。

相关推荐
Z9fish3 分钟前
sse哈工大C语言编程练习20
c语言·开发语言·算法
晓13138 分钟前
第六章 【C语言篇:结构体&位运算】 结构体、位运算全面解析
c语言·算法
iAkuya14 分钟前
(leetcode)力扣100 61分割回文串(回溯,动归)
算法·leetcode·职场和发展
梵刹古音17 分钟前
【C语言】 指针与数据结构操作
c语言·数据结构·算法
VT.馒头23 分钟前
【力扣】2695. 包装数组
前端·javascript·算法·leetcode·职场和发展·typescript
HyperAI超神经1 小时前
在线教程|DeepSeek-OCR 2公式/表格解析同步改善,以低视觉token成本实现近4%的性能跃迁
开发语言·人工智能·深度学习·神经网络·机器学习·ocr·创业创新
CoderCodingNo2 小时前
【GESP】C++五级练习题 luogu-P1865 A % B Problem
开发语言·c++·算法
大闲在人2 小时前
7. 供应链与制造过程术语:“周期时间”
算法·供应链管理·智能制造·工业工程
小熳芋2 小时前
443. 压缩字符串-python-双指针
算法
Charlie_lll2 小时前
力扣解题-移动零
后端·算法·leetcode