On Data Scaling in Masked Image Modelin

论文名称:On Data Scaling in Masked Image Modeling

发表时间:CVPR2023

作者及组织:Zhenda Xie, ZhengZhang, Hu Han等,来自清华,西安交大,微软亚洲研究院。

前言

本文验证SIMMIM无监督预训练方法,是否会出现与NLP类似的拓展法则现象。

1、结论

这篇论文做了大量的对比实验,因此,先说结论:

1)大模型在小数据上过拟合;(感觉没啥a)

2)MIM需要更多的训练次数 T T T ;

3)预训练阶段的valid loss是对下游任务性能的很好代理指标。

总结:MIM的拓展法则可用这个式子近似:
P r e c i s i o n = D a t a _ S c a l e ∗ M o d e l _ S i z e ∗ T \begin{equation} Precision = Data\_Scale * Model\_Size * T \end{equation} Precision=Data_Scale∗Model_Size∗T

2、实验

2.1.对比实验配置

1)模型 :swin,参数量:50M1B,Flops:9G190G;

2) 数据 :如下图所示,将ImageNet1k按百分比划分出若干组子数据;

3) 训练时长 :125k,250k以及500k。在ImageNet1k上换算就是200,400,800epochs。

2.2.Pretrained实验结论:

上图表示在不同训练时长下在ImageNet1k上的精度:

首先说下simmim预训练方法的一个性质:能够用较少的数据跟用大量数据的有监督学习的精度持平。

1)第二列:Swin_L比Swin_H精度高,因为后者在IN1k20%出现过拟合;

2)当IN1k增加到IN22k时,Swin_H和Swin_G看起来饱和了。这应该是这俩模型的上限了,要想精度更高可能需要调大模型。

3)在800epoch 下,IN1K对于上述五个模型均未出现过拟合!IN1k对于小模型的数据量是够用的。

2.3.Finetune实验结论:

这里主要贴下coco上实验结论:在IN1k下在800epoch下,mAP是一直涨,但在IN22K下mAP似乎也饱和了。(论文中更大模型实验没做a...)

2.4.Pretrain stage的valid loss是Finetune的代理指标

上图红圈表示过拟合模型,绿圈表示非过拟合模型;不管过不过拟合在valid loss跟mAP是正相关的。

2.5.结论

在IN1k,小模型swin_s/b,只要在预训练阶段valid loss持续下降,则训练时长越长越好(至少800epoch)。

相关推荐
Trent19855 分钟前
影楼精修-眼镜祛反光算法详解
图像处理·人工智能·算法·计算机视觉·aigc
吾在学习路15 分钟前
【CVPR 2018最佳论文】Squeeze-and-Excitation Networks
人工智能·深度学习·神经网络·机器学习
小黄人软件18 分钟前
豆包AI手机是未来所有带屏设备的方向,包括POS机。豆包AI手机需要很强的本地算力吗?不需要。
人工智能·智能手机
Salt_072819 分钟前
DAY 47 Tensorboard的使用介绍
人工智能·python·深度学习·机器学习
木卫二号Coding24 分钟前
第七十篇-ComfyUI+V100-32G+运行SD3.5-文生图
人工智能
Salt_072831 分钟前
DAY 40 早停策略和模型权重的保存
人工智能·python·算法·机器学习
码农小白猿43 分钟前
IACheck优化电梯定期检验报告:自动化术语审核提升合规性与效率
大数据·运维·人工智能·ai·自动化·iacheck
点云SLAM1 小时前
Absence 英文单词学习
人工智能·英文单词学习·雅思备考·absence·缺席 / 不在场·缺乏 / 缺失
酌沧1 小时前
读懂深度学习中的梯度爆炸和梯度消失
人工智能·深度学习