On Data Scaling in Masked Image Modelin

论文名称:On Data Scaling in Masked Image Modeling

发表时间:CVPR2023

作者及组织:Zhenda Xie, ZhengZhang, Hu Han等,来自清华,西安交大,微软亚洲研究院。

前言

本文验证SIMMIM无监督预训练方法,是否会出现与NLP类似的拓展法则现象。

1、结论

这篇论文做了大量的对比实验,因此,先说结论:

1)大模型在小数据上过拟合;(感觉没啥a)

2)MIM需要更多的训练次数 T T T ;

3)预训练阶段的valid loss是对下游任务性能的很好代理指标。

总结:MIM的拓展法则可用这个式子近似:
P r e c i s i o n = D a t a _ S c a l e ∗ M o d e l _ S i z e ∗ T \begin{equation} Precision = Data\_Scale * Model\_Size * T \end{equation} Precision=Data_Scale∗Model_Size∗T

2、实验

2.1.对比实验配置

1)模型 :swin,参数量:50M~1B,Flops:9G~190G;

2) 数据 :如下图所示,将ImageNet1k按百分比划分出若干组子数据;

3) 训练时长 :125k,250k以及500k。在ImageNet1k上换算就是200,400,800epochs。

2.2.Pretrained实验结论:

上图表示在不同训练时长下在ImageNet1k上的精度:

首先说下simmim预训练方法的一个性质:能够用较少的数据跟用大量数据的有监督学习的精度持平。

1)第二列:Swin_L比Swin_H精度高,因为后者在IN1k20%出现过拟合;

2)当IN1k增加到IN22k时,Swin_H和Swin_G看起来饱和了。这应该是这俩模型的上限了,要想精度更高可能需要调大模型。

3)在800epoch 下,IN1K对于上述五个模型均未出现过拟合!IN1k对于小模型的数据量是够用的。

2.3.Finetune实验结论:

这里主要贴下coco上实验结论:在IN1k下在800epoch下,mAP是一直涨,但在IN22K下mAP似乎也饱和了。(论文中更大模型实验没做a...)

2.4.Pretrain stage的valid loss是Finetune的代理指标

上图红圈表示过拟合模型,绿圈表示非过拟合模型;不管过不过拟合在valid loss跟mAP是正相关的。

2.5.结论

在IN1k,小模型swin_s/b,只要在预训练阶段valid loss持续下降,则训练时长越长越好(至少800epoch)。

相关推荐
IT猿手13 分钟前
超多目标优化:基于导航变量的多目标粒子群优化算法(NMOPSO)的无人机三维路径规划,MATLAB代码
人工智能·算法·机器学习·matlab·无人机
JolyouLu23 分钟前
PyTorch-基础(CUDA、Dataset、transforms、卷积神经网络、VGG16)
人工智能·pytorch·cnn
CS_木成河26 分钟前
【深度学习】预训练和微调概述
人工智能·深度学习·语言模型·微调·预训练
新加坡内哥谈技术35 分钟前
微软发布Majorana 1芯片,开启量子计算新路径
人工智能·深度学习·语言模型·自然语言处理
真智AI1 小时前
使用 DistilBERT 进行资源高效的自然语言处理
人工智能·自然语言处理
OpenBuild.xyz1 小时前
我是如何从 0 到 1 找到 Web3 工作的?
人工智能·web3·去中心化·区块链·智能合约
Sui_Network1 小时前
Sui 如何支持各种类型的 Web3 游戏
大数据·数据库·人工智能·游戏·web3·区块链
ZKNOW甄知科技2 小时前
IT服务运营管理体系的常用方法论与实践指南(上)
大数据·数据库·人工智能
Luke Ewin2 小时前
根据音频中的不同讲述人声音进行分离音频 | 基于ai的说话人声音分离项目
人工智能·python·音视频·语音识别·声纹识别·asr·3d-speaker
終不似少年遊*2 小时前
循环神经网络RNN原理与优化
人工智能·rnn·深度学习·神经网络·lstm