On Data Scaling in Masked Image Modelin

论文名称:On Data Scaling in Masked Image Modeling

发表时间:CVPR2023

作者及组织:Zhenda Xie, ZhengZhang, Hu Han等,来自清华,西安交大,微软亚洲研究院。

前言

本文验证SIMMIM无监督预训练方法,是否会出现与NLP类似的拓展法则现象。

1、结论

这篇论文做了大量的对比实验,因此,先说结论:

1)大模型在小数据上过拟合;(感觉没啥a)

2)MIM需要更多的训练次数 T T T ;

3)预训练阶段的valid loss是对下游任务性能的很好代理指标。

总结:MIM的拓展法则可用这个式子近似:
P r e c i s i o n = D a t a _ S c a l e ∗ M o d e l _ S i z e ∗ T \begin{equation} Precision = Data\_Scale * Model\_Size * T \end{equation} Precision=Data_Scale∗Model_Size∗T

2、实验

2.1.对比实验配置

1)模型 :swin,参数量:50M1B,Flops:9G190G;

2) 数据 :如下图所示,将ImageNet1k按百分比划分出若干组子数据;

3) 训练时长 :125k,250k以及500k。在ImageNet1k上换算就是200,400,800epochs。

2.2.Pretrained实验结论:

上图表示在不同训练时长下在ImageNet1k上的精度:

首先说下simmim预训练方法的一个性质:能够用较少的数据跟用大量数据的有监督学习的精度持平。

1)第二列:Swin_L比Swin_H精度高,因为后者在IN1k20%出现过拟合;

2)当IN1k增加到IN22k时,Swin_H和Swin_G看起来饱和了。这应该是这俩模型的上限了,要想精度更高可能需要调大模型。

3)在800epoch 下,IN1K对于上述五个模型均未出现过拟合!IN1k对于小模型的数据量是够用的。

2.3.Finetune实验结论:

这里主要贴下coco上实验结论:在IN1k下在800epoch下,mAP是一直涨,但在IN22K下mAP似乎也饱和了。(论文中更大模型实验没做a...)

2.4.Pretrain stage的valid loss是Finetune的代理指标

上图红圈表示过拟合模型,绿圈表示非过拟合模型;不管过不过拟合在valid loss跟mAP是正相关的。

2.5.结论

在IN1k,小模型swin_s/b,只要在预训练阶段valid loss持续下降,则训练时长越长越好(至少800epoch)。

相关推荐
Biehmltym2 分钟前
【AI】07 AI Agent可控风格LLM 问答(含FastAPI 求/返回/路由、跨域访问CORS、System Prompt)
人工智能·prompt·fastapi
大任视点2 分钟前
米悦MIY:以科技赋能健康生活,打造高端生活家电新标杆
大数据·人工智能
shayudiandian8 分钟前
临时文件自动化管理方案
人工智能
natide10 分钟前
表示/嵌入差异-5-皮尔森相关系数(Pearson Correlation Coefficient)
人工智能·深度学习·机器学习·自然语言处理·nlp
Jerry Lau11 分钟前
Nano Studio: 打造现代化的 AI 知识管理平台
人工智能·ai·rag
njsgcs12 分钟前
世界模型 是什么 cuas
人工智能
光羽隹衡12 分钟前
机器学习——支持向量机(SVM)
人工智能·机器学习·支持向量机
编码小哥12 分钟前
OpenCV Otsu‘s二值化算法原理与实现
人工智能·opencv·计算机视觉
Coding茶水间14 分钟前
基于深度学习的X光骨折检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
深度学习·yolo·机器学习
HyperAI超神经15 分钟前
【vLLM 学习】Reproduciblity
人工智能·深度学习·学习·cpu·gpu·编程语言·vllm