【论文阅读笔记】Sam3d: Segment anything model in volumetric medical images[

Bui N T, Hoang D H, Tran M T, et al. Sam3d: Segment anything model in volumetric medical images[J]. arXiv preprint arXiv:2309.03493, 2023.【开源】

本文提出的SAM3D模型是针对三维体积医学图像分割的一种新方法。其核心在于将"分割任何事物"(SAM)模型的预训练编码器与一个轻量级的3D解码器相结合。与传统的逐层处理不同,SAM3D能够在整个体积上处理图像,更有效地捕捉切片间的深度关系,同时维持模型的简单性和计算效率。

主要特点包括:

  1. 预训练的SAM编码器:该编码器在大规模数据集上预训练,能够提取出鲁棒的低级特征,如边缘和边界,这些在不同的图像域中都有相关性。

  2. 去除了SAM中的prompts Encoder:因为解码器必须处理 3D 体积数据,所以不能使用 SAM 的掩模解码器,它是专门为 2D 自然图像设计的

  3. 轻量级3D解码器:为了处理3D体积数据,SAM3D提出了一个适当的3D解码器。这个解码器由四个3D卷积块和一个分割头组成,通过跳跃连接实现,有助于在保持模型简单的同时提高分割性能。

  4. 处理方式:SAM3D通过先将3D体积图像分解为2D切片,然后通过预训练的SAM编码器处理每个切片,生成3D切片嵌入。这些嵌入被3D解码器进一步处理,以捕获切片间的深度关系。

  5. 损失函数:模型训练使用了组合损失函数,包括dice loss和cross-entropy loss,以优化分割性能。

  6. 实验结果:通过在多个医学图像数据集上的实验,只需要单2080TI GPU,SAM3D显示了与当前最先进的3D神经网络和基于Transformer的模型相当的性能(其实弱很多),同时在参数数量上大大减少。

相关推荐
大数据追光猿34 分钟前
【大数据Doris】生产环境,Doris主键模型全表7000万数据更新写入为什么那么慢?
大数据·经验分享·笔记·性能优化·doris
sevenez37 分钟前
Vibe Coding 实战笔记:从“修好了C坏了AB”到企业级数据库架构重构
c语言·笔记·数据库架构
智嵌电子40 分钟前
【笔记篇】【硬件基础篇】模拟电子技术基础 (童诗白) 第10章 模拟电子电路读图
笔记·单片机·嵌入式硬件
2301_800050991 小时前
mysql
数据库·笔记·mysql
QT 小鲜肉2 小时前
【Linux命令大全】001.文件管理之mmove命令(实操篇)
linux·服务器·前端·chrome·笔记
不会学习?2 小时前
markdown笔记分享
经验分享·笔记
数说星榆1812 小时前
项目管理跨职能泳道图在线生成方法
论文阅读·流程图·论文笔记
QT 小鲜肉2 小时前
【Linux命令大全】001.文件管理之mdel命令(实操篇)
linux·运维·服务器·chrome·笔记
lkbhua莱克瓦244 小时前
基础-函数
开发语言·数据库·笔记·sql·mysql·函数
yuxb734 小时前
Kubernetes核心组件详解与实践:Service
笔记·kubernetes