【论文阅读笔记】Sam3d: Segment anything model in volumetric medical images[

Bui N T, Hoang D H, Tran M T, et al. Sam3d: Segment anything model in volumetric medical images[J]. arXiv preprint arXiv:2309.03493, 2023.【开源】

本文提出的SAM3D模型是针对三维体积医学图像分割的一种新方法。其核心在于将"分割任何事物"(SAM)模型的预训练编码器与一个轻量级的3D解码器相结合。与传统的逐层处理不同,SAM3D能够在整个体积上处理图像,更有效地捕捉切片间的深度关系,同时维持模型的简单性和计算效率。

主要特点包括:

  1. 预训练的SAM编码器:该编码器在大规模数据集上预训练,能够提取出鲁棒的低级特征,如边缘和边界,这些在不同的图像域中都有相关性。

  2. 去除了SAM中的prompts Encoder:因为解码器必须处理 3D 体积数据,所以不能使用 SAM 的掩模解码器,它是专门为 2D 自然图像设计的

  3. 轻量级3D解码器:为了处理3D体积数据,SAM3D提出了一个适当的3D解码器。这个解码器由四个3D卷积块和一个分割头组成,通过跳跃连接实现,有助于在保持模型简单的同时提高分割性能。

  4. 处理方式:SAM3D通过先将3D体积图像分解为2D切片,然后通过预训练的SAM编码器处理每个切片,生成3D切片嵌入。这些嵌入被3D解码器进一步处理,以捕获切片间的深度关系。

  5. 损失函数:模型训练使用了组合损失函数,包括dice loss和cross-entropy loss,以优化分割性能。

  6. 实验结果:通过在多个医学图像数据集上的实验,只需要单2080TI GPU,SAM3D显示了与当前最先进的3D神经网络和基于Transformer的模型相当的性能(其实弱很多),同时在参数数量上大大减少。

相关推荐
weixin_443290691 分钟前
【论文阅读】Prompt-to-Prompt Image Editing with Cross Attention Control
论文阅读·prompt
金星娃儿2 小时前
MATLAB基础知识笔记——(矩阵的运算)
笔记·matlab·矩阵
源于花海3 小时前
论文学习(四) | 基于数据驱动的锂离子电池健康状态估计和剩余使用寿命预测
论文阅读·人工智能·学习·论文笔记
B20080116刘实5 小时前
CTF攻防世界小白刷题自学笔记13
开发语言·笔记·web安全·网络安全·php
静止了所有花开7 小时前
SpringMVC学习笔记(二)
笔记·学习
红中马喽10 小时前
JS学习日记(webAPI—DOM)
开发语言·前端·javascript·笔记·vscode·学习
huangkj-henan12 小时前
DA217应用笔记
笔记
Young_2022020212 小时前
学习笔记——KMP
笔记·学习
秀儿还能再秀13 小时前
机器学习——简单线性回归、逻辑回归
笔记·python·学习·机器学习
WCF向光而行13 小时前
Getting accurate time estimates from your tea(从您的团队获得准确的时间估计)
笔记·学习