Stable Diffusion中不同的采样方法

在 Stable Diffusion 模型中,采样方法是从学习到的概率分布中生成图像的算法。采样方法影响生成图像的质量、样式、速度以及过程的控制程度。以下是一些采样方法的概述和它们对图像生成可能产生的影响:

DPM++系列

  • DPM++ 2M / 3M: 这些是扩展的扩散概率模型,其中数字表示模型使用的标记步数(例如2M表示200万步)。步数越多,通常生成的图像细节和质量越高,但需要更长的计算时间。
  • DPM++ SDE: 指扩展的扩散概率模型结合了随机微分方程(SDE),提供了不同的扩散和逆扩散路径,可能带来更自然的图像生成过程。
  • DPM++ SDE Karras / DPM++ 2M SDE Karras: 这些方法可能结合了由 Timo Aila 和 Samuli Laine 提出的扩展模型,以及随机微分方程和 Karras 等人提出的优化策略,以提高图像质量和生成速度。
  • DPM++ SDE Exponential: 可能应用了指数积分策略在 SDE 中,影响扩散过程,可能导致生成图像的平滑程度和细节有所不同。

DDIM

  • DDIM (Denoising Diffusion Implicit Models): 这是一种更快的采样方法,能够在更少的迭代次数下生成图像,通常会产生较为确定性的结果,适合需要快速反馈的场景。

PLMS

  • PLMS (Pseudo Likelihood Markov Sampler): 这种方法通过改进的马尔可夫链来逼近模型的概率分布,可能会生成更加多样且高质量的图像。

Euler 和 Heun

  • Eulera / Euler / Heun: 这些都是数值积分方法,用于求解随机微分方程,影响图像的生成过程和最终质量。Euler 方法更简单,而 Heun 提供了更好的近似,可能会产生更高质量的图像。

DPM系列

  • DPM fast / DPM adaptive: 这些方法可能是对传统的扩散概率模型的优化,"fast" 和 "adaptive" 表示采样过程中采取了加速技巧或自适应调整步骤大小,以加快生成速度或提高图像质量。
  • DPM2 / DPM2 Karras: "DPM2" 可能表示第二代扩散概率模型,而 "Karras" 表示应用了 Karras 的优化策略。这可能提高了图像生成的效率和质量。

UniPC

  • UniPC: 这可能是一种唯一的采样策略,具体细节可能需要参考文献或实现代码,但其目的通常是优化生成过程,提高图像质量或生成速度。

不同的采样方法适用于不同的场景,具体取决于用户对生成图像的质量、速度和控制程度的需求。以下是一些通用指导原则,帮助选择适合特定场景的采样方法:

高质量图像生成

  • 如果目标是生成尽可能高质量和细节丰富的图像,选择步数更多的采样方法(如 "DPM++ 3M" 或 "DPM++ 2M SDE Karras")可能更合适,因为它们提供了更细致的生成过程。

快速图像生成

  • 当需要快速反馈或较短的生成时间时(例如实时应用或用户界面交互),使用 "DDIM" 或 "DPM fast" 等较快的采样方法可能更为合适。

图像风格多样性

  • 如果用户想要在生成的图像中实现更大的多样性和创意表达,"PLMS" 或 "UniPC" 等采样方法可能能提供更多的随机性和创造性空间。

图像风格和内容的细微调整

  • 对于需要精细控制图像生成过程的应用(如艺术创作或特定风格的模仿),"DPM++ SDE" 或 "DPM++ SDE Karras" 等方法可能提供更好的控制能力。

稳健性和可靠性

  • 在需要保证生成图像的稳定性和可靠性的商业或生产环境中,建议选择经过广泛测试且被证明能够产生高质量结果的采样方法,例如 "DPM++ 2M SDE" 或 "DPM++ 2M SDE Exponential"。

实际上,这些指导不太有大用处,炼丹还是得多去换模型、换参数、换采样方法,才能得到疑似最优解。

相关推荐
小鸡吃米…6 小时前
机器学习 - K - 中心聚类
人工智能·机器学习·聚类
好奇龙猫6 小时前
【AI学习-comfyUI学习-第三十节-第三十一节-FLUX-SD放大工作流+FLUX图生图工作流-各个部分学习】
人工智能·学习
沈浩(种子思维作者)7 小时前
真的能精准医疗吗?癌症能提前发现吗?
人工智能·python·网络安全·健康医疗·量子计算
minhuan7 小时前
大模型应用:大模型越大越好?模型参数量与效果的边际效益分析.51
人工智能·大模型参数评估·边际效益分析·大模型参数选择
Cherry的跨界思维7 小时前
28、AI测试环境搭建与全栈工具实战:从本地到云平台的完整指南
java·人工智能·vue3·ai测试·ai全栈·测试全栈·ai测试全栈
MM_MS7 小时前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
ASF1231415sd7 小时前
【基于YOLOv10n-CSP-PTB的大豆花朵检测与识别系统详解】
人工智能·yolo·目标跟踪
水如烟8 小时前
孤能子视角:“意识“的阶段性回顾,“感质“假说
人工智能
Carl_奕然8 小时前
【数据挖掘】数据挖掘必会技能之:A/B测试
人工智能·python·数据挖掘·数据分析
旅途中的宽~8 小时前
《European Radiology》:2024血管瘤分割—基于MRI T1序列的分割算法
人工智能·计算机视觉·mri·sci一区top·血管瘤·t1