《如何制作类mnist的金融数据集》——2.生成28*28灰度图

2 .生成28*28灰度图

有了9类共54000张黑白图后,需要对它进行进一步的处理,那就是把它弄成28*28的黑像素图像。主要思路就是对每类图像的文件夹进行遍历,然后resize

直接上代码:

python 复制代码
import torchvision.transforms as transforms
from PIL import Image

num=6000
for i in range(num):
    # 读取原始图像
    # original_image = Image.open('./pre_data0/{}_0.jpg'.format(i+1))
    # original_image = Image.open('./pre_data1/{}_1.jpg'.format(i+1))
    # original_image = Image.open('./pre_data2/{}_2.jpg'.format(i+1))
    # original_image = Image.open('./pre_data3/{}_3.jpg'.format(i+1))
    # original_image = Image.open('./pre_data4/{}_4.jpg'.format(i+1))
    # original_image = Image.open('./pre_data5/{}_5.jpg'.format(i+1))
    # original_image = Image.open('./pre_data6/{}_6.jpg'.format(i+1))
    # original_image = Image.open('./pre_data7/{}_7.jpg'.format(i+1))
    original_image = Image.open('./pre_data8/{}_8.jpg'.format(i+1))
    # 定义转换
    transform = transforms.Compose([
        transforms.Grayscale(num_output_channels=1),
        transforms.Resize((28, 28)),
        transforms.ToTensor()
    ])
    # 应用转换
    transformed_image = transform(original_image).squeeze(0)  # squeeze(pre_data0)用于去掉批处理维度
    # print(transformed_image)
    for i1 in range(28):
        for j in range(28):
            if transformed_image[i1][j] < 0.1:
                transformed_image[i1][j] = 0
            else:
                transformed_image[i1][j] = 1
    # 将张量转换为图像
    transformed_image_PIL = transforms.ToPILImage()(transformed_image)
    # 保存图像
    # transformed_image_PIL.save('./aft_train_data0/{}_0.jpg'.format(i+1))
    # transformed_image_PIL.save('./aft_train_data1/{}_1.jpg'.format(i+1))
    # transformed_image_PIL.save('./aft_train_data2/{}_2.jpg'.format(i+1))
    # transformed_image_PIL.save('./aft_train_data3/{}_3.jpg'.format(i+1))
    # transformed_image_PIL.save('./aft_train_data4/{}_4.jpg'.format(i+1))
    # transformed_image_PIL.save('./aft_train_data5/{}_5.jpg'.format(i+1))
    # transformed_image_PIL.save('./aft_train_data6/{}_6.jpg'.format(i+1))
    # transformed_image_PIL.save('./aft_train_data7/{}_7.jpg'.format(i+1))
    # transformed_image_PIL.save('./aft_train_data8/{}_8.jpg'.format(i+1))

    # transformed_image_PIL.save('./aft_test_data0/{}_0.jpg'.format(i+1))
    # transformed_image_PIL.save('./aft_test_data1/{}_1.jpg'.format(i+1))
    # transformed_image_PIL.save('./aft_test_data2/{}_2.jpg'.format(i+1))
    # transformed_image_PIL.save('./aft_test_data3/{}_3.jpg'.format(i+1))
    # transformed_image_PIL.save('./aft_test_data4/{}_4.jpg'.format(i+1))
    # transformed_image_PIL.save('./aft_test_data5/{}_5.jpg'.format(i+1))
    # transformed_image_PIL.save('./aft_test_data6/{}_6.jpg'.format(i+1))
    # transformed_image_PIL.save('./aft_test_data7/{}_7.jpg'.format(i+1))
    # transformed_image_PIL.save('./aft_test_data8/{}_8.jpg'.format(i+1))

    # transformed_image_PIL.save('./testdata_png/{}_8.png'.format(i + 1))

    transformed_image_PIL.save('./traindata_png/{}_8.png'.format(i + 1))
相关推荐
智慧地球(AI·Earth)6 分钟前
当 Manus AI 遇上 OpenAI Operator,谁能更胜一筹?
人工智能
小森776713 分钟前
(七)深度学习---神经网络原理与实现
人工智能·深度学习·神经网络·算法
Fireworkitte14 分钟前
边缘网关(边缘计算)
人工智能·边缘计算
threelab28 分钟前
03.three官方示例+编辑器+AI快速学习webgl_animation_multiple
人工智能·学习·编辑器
skywalk816330 分钟前
开发与AI融合的Windsurf编辑器
人工智能·编辑器
Cherry Xie35 分钟前
腾讯发布数字人框架MuseTalk 1.5,开放训练逻辑,生成效果进一步优化~
人工智能
ViiTor_AI40 分钟前
视频翻译软件有哪些?推荐5款视频翻译工具[特殊字符][特殊字符]
人工智能·机器翻译
李恒-聆机智能专精数采1 小时前
从零开始了解数据采集(二十七)——什么IIOT平台
大数据·人工智能·云计算·制造·数据采集·数据可视化
mex_wayne1 小时前
OpenVLA (2) 机器人环境和环境数据
人工智能·openvla·bridgedata
EasyDSS1 小时前
AI智能分析网关V4助力工厂/工地/车间/能源矿山场景玩手机行为精准检测与安全生产智能化监管
网络·人工智能