FlinkSQL【分组聚合-多维分析-性能调优】应用实例分析

FlinkSQL处理如下实时数据需求:

实时聚合不同 类型/账号/发布时间 的各个指标数据,比如:初始化/初始化后删除/初始化后取消/推送/成功/失败 的指标数据。要求实时产出指标数据,数据源是mysql cdc binlog数据。

代码实例

sql 复制代码
--SET table.exec.state.ttl=86400s; --24 hour,默认: 0 ms
SET table.exec.state.ttl=2592000s; --30 days,默认: 0 ms
--MiniBatch 聚合
SET table.exec.mini-batch.enabled = true;
SET table.exec.mini-batch.allow-latency = 1s;
SET table.exec.mini-batch.size = 10000;
--Local-Global 聚合
SET table.optimizer.agg-phase-strategy = TWO_PHASE;

CREATE TABLE kafka_table (
     mid bigint,
     db string,
     sch string,
     tab string,
     opt string,
     ts bigint,
     ddl string,
     err string,
     src map<string,string>,
     cur map<string,string>,
     cus map<string,string>,
     account_id AS IF(cur['account_id'] IS NOT NULL , cur['account_id'], src ['account_id']),
     publish_time AS IF(cur['publish_time'] IS NOT NULL , cur['publish_time'], src ['publish_time']),
     msg_status AS IF(cur['msg_status'] IS NOT NULL , cur['msg_status'], src ['msg_status']),
     send_type AS IF(cur['send_type'] IS NOT NULL , cur['send_type'], src ['send_type'])
     --event_time as cast(IF(cur['update_time'] IS NOT NULL , cur['update_time'], src ['update_time']) AS TIMESTAMP(3)), -- TIMESTAMP(3)/TIMESTAMP_LTZ(3)
     --WATERMARK FOR event_time AS event_time - INTERVAL '1' MINUTE     --SECOND
) WITH (
  'connector' = 'kafka',
  'topic' = 't1',
  'properties.bootstrap.servers' = 'xx.xx.xx.xx:9092',
  'properties.group.id' = 'g1',
  'scan.startup.mode' = 'earliest-offset',  --group-offsets/earliest-offset/latest-offset
   --  'properties.enable.auto.commit',= 'true' -- default:false, 如果为false,则在发生checkpoint时触发offset提交
  'format' = 'json'
);



CREATE TABLE es_sink(
     send_type      STRING
    ,account_id     STRING
    ,publish_time   STRING
    ,grouping_id       INTEGER
    ,init           INTEGER
    ,init_cancel    INTEGER
    ,push          INTEGER
    ,succ           INTEGER
    ,fail           INTEGER
    ,init_delete    INTEGER
    ,update_time    STRING
    ,PRIMARY KEY (group_id,send_type,account_id,publish_time) NOT ENFORCED
)
with (
    'connector' = 'elasticsearch-6',
    'index' = 'es_sink',
    'document-type' = 'es_sink',
    'hosts' = 'http://xxx:9200',
    'format' = 'json',
    'filter.null-value'='true',
    'sink.bulk-flush.max-actions' = '1000',
    'sink.bulk-flush.max-size' = '10mb'
);

CREATE view  tmp as
select
    send_type,
    account_id,
    publish_time,
    msg_status,
    case when UPPER(opt) = 'INSERT' and msg_status='0'  then 1 else 0 end AS init,
    case when UPPER(opt) = 'UPDATE' and send_type='1' and msg_status='4' then 1 else 0 end AS init_cancel,
    case when UPPER(opt) = 'UPDATE' and msg_status='3' then 1 else 0 end AS push,
    case when UPPER(opt) = 'UPDATE' and (msg_status='1' or msg_status='5') then 1 else 0 end AS succ,
    case when UPPER(opt) = 'UPDATE' and (msg_status='2' or msg_status='6') then 1 else 0 end AS fail,
    case when UPPER(opt) = 'DELETE' and send_type='1' and msg_status='0' then  1 else 0 end AS init_delete,
    event_time,
    opt,
    ts
FROM kafka_table
where (UPPER(opt) = 'INSERT' and msg_status='0' )
or        (UPPER(opt) = 'UPDATE' and msg_status in ('1','2','3','4','5','6'))
or        (UPPER(opt) = 'DELETE' and send_type='1' and msg_status='0');


--send_type=1          send_type=0
--初始化->0             初始化->0
--取消->4
--推送->3               推送->3
--成功->1               成功->5
--失败->2               失败->6

CREATE view  tmp_groupby as
select
 COALESCE(send_type,'N') AS send_type
,COALESCE(account_id,'N') AS account_id
,COALESCE(publish_time,'N') AS publish_time
,case when send_type is null and account_id is null and publish_time is null then 1
         when send_type is not null and account_id is null and publish_time is null then 2
         when send_type is not null and account_id is not null and publish_time is null then 3
         when send_type is not null and account_id is not null and publish_time is not null then 4
         end grouping_id
,sum(init) as init
,sum(init_cancel) as init_cancel
,sum(push) as push
,sum(succ) as succ
,sum(fail) as fail
,sum(init_delete) as init_delete
from tmp
--GROUP BY GROUPING SETS ((send_type,account_id,publish_time), (send_type,account_id),(send_type), ())
GROUP BY ROLLUP (send_type,account_id,publish_time); --等同于以上

INSERT INTO es_sink
select
     send_type
    ,account_id
    ,publish_time
    ,grouping_id
    ,init
    ,init_cancel
    ,push
    ,succ
    ,fail
    ,init_delete
    ,CAST(LOCALTIMESTAMP AS STRING) as update_time
from tmp_groupby

其他配置

  • flink集群参数
bash 复制代码
state.backend: rocksdb
state.backend.incremental: true
state.backend.rocksdb.ttl.compaction.filter.enabled: true
state.backend.rocksdb.localdir: /export/io_tmp_dirs/rocksdb
state.checkpoints.dir: hdfs://namenode-host:port/flink-checkpoints
state.savepoints.dir: hdfs://namenode-host:port/flink-savepoints
rest.flamegraph.enabled: true
pipeline.operator-chaining: false
taskmanager.memory.managed.fraction: 0.7
taskmanager.memory.network.min: 128 mb
taskmanager.memory.network.max: 128 mb
taskmanager.memory.framework.off-heap.size: 32mb
taskmanager.memory.task.off-heap.size: 32mb
taskmanager.memory.jvm-metaspace.size: 256mb
taskmanager.memory.jvm-overhead.fraction: 0.03
  • 检查点配置

  • job运行资源

    管理节点(JM) 1 个, 节点规格 1 核 4 GB内存, 磁盘 10Gi

    运行节点(TM)10 个, 节点规格 1 核 4 GB内存, 磁盘 80Gi

    单TM槽位数(Slot): 1

    默认并行度:8

  • es mapping

bash 复制代码
#POST app_cust_syyy_private_domain_syyy_group_msg/app_cust_syyy_private_domain_syyy_group_msg/_mapping
{
    "app_cust_syyy_private_domain_syyy_group_msg": {
        "properties": {
            "send_type": {
                "type": "keyword",
                "ignore_above": 256
            },
            "account_id": {
                "type": "keyword"
            },
           "publish_time": {
           	"type": "keyword",
           	"fields": {
           		"text": {
           			"type": "keyword"
           		},
           		"date": {
           			"type": "date",
           			"format": "yyyy-MM-dd HH:mm:ss.SSS||yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||epoch_millis",
           			"ignore_malformed":"true" # 忽略错误的各式
           		}
           	}
           },
            "grouping_id": {
                "type": "integer"
            },
            "init": {
                "type": "integer"
            },
            "init_cancel": {
                "type": "integer"
            },
            "query": {
                "type": "integer"
            },
            "succ": {
                "type": "integer"
            },
            "fail": {
                "type": "integer"
            },
            "init_delete": {
                "type": "integer"
            },
            "update_time": {
                "type": "date",
                "format": "yyyy-MM-dd HH:mm:ss.SSS||yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||epoch_millis"
            }
        }
    }
}

性能调优

是否开启【MiniBatch 聚合】和【Local-Global 聚合】对分组聚合场景影响巨大,尤其是在数据量大的场景下。

  • 如果未开启,在分组聚合,数据更新状态时,每条数据都会触发聚合运算,进而更新StateBackend (尤其是对于 RocksDB StateBackend,火焰图上反映就是一直在update rocksdb),造成上游算子背压特别大。此外,生产中非常常见的数据倾斜会使这个问题恶化,并且容易导致 job 发生反压。

  • 在开启【MiniBatch 聚合】和【Local-Global 聚合】后,配置如下:

sql 复制代码
--MiniBatch 聚合
SET table.exec.mini-batch.enabled = true;
SET table.exec.mini-batch.allow-latency = 1s;
SET table.exec.mini-batch.size = 10000;
--Local-Global 聚合
SET table.optimizer.agg-phase-strategy = TWO_PHASE;

开启配置好会在DAG上添加两个环节MiniBatchAssignerLocalGroupAggregate

对结果的影响

开启了【MiniBatch 聚合】和【Local-Global 聚合】后,一天处理不完的数据,在10分钟内处理完毕

输出结果

参考:
Group Aggregation
Streaming Aggregation Performance Tuning

相关推荐
阿里云大数据AI技术1 小时前
ES Serverless 8.17王牌发布:向量检索「火力全开」,智能扩缩「秒级响应」!
大数据·运维·serverless
Mikhail_G1 小时前
Python应用变量与数据类型
大数据·运维·开发语言·python·数据分析
G皮T2 小时前
【Elasticsearch】映射:null_value 详解
大数据·elasticsearch·搜索引擎·映射·mappings·null_value
大霸王龙3 小时前
软件工程的软件生命周期通常分为以下主要阶段
大数据·人工智能·旅游
点赋科技3 小时前
沙市区举办资本市场赋能培训会 点赋科技分享智能消费新实践
大数据·人工智能
YSGZJJ4 小时前
股指期货技术分析与短线操作方法介绍
大数据·人工智能
Doker 多克4 小时前
Flink CDC —部署模式
大数据·flink
Guheyunyi4 小时前
监测预警系统重塑隧道安全新范式
大数据·运维·人工智能·科技·安全
酷爱码5 小时前
Spring Boot 整合 Apache Flink 的详细过程
spring boot·flink·apache
问道飞鱼5 小时前
Flink 高可用集群部署指南
flink·部署·批处理·流式批处理