【scikit-learn基础】--『监督学习』之 空间聚类

空间聚类算法是数据挖掘和机器学习领域中的一种重要技术。

本篇介绍的基于密度的空间聚类 算法的概念可以追溯到1990年代初期。

随着数据量的增长和数据维度的增加,基于密度的算法逐渐引起了研究者的关注。

其中,DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是最具代表性的算法之一。

基于密度的空间聚类 算法在许多领域都有应用,例如图像处理、生物信息学、社交网络分析等。

在图像处理中,该算法可以用于检测图像中的密集区域,用于识别物体或形状。

1. 算法概述

DBSCAN算法的基本思想是,对于给定的数据集,基于数据点的密度 进行聚类。

在密度高的区域,数据点更为集中,而密度低的区域数据点较为稀疏。

基于密度的算法能够发现任意形状的簇,并且对噪声有较好的鲁棒性。

算法的核心在于:

  1. 定义邻域:对于数据集中的每个点,其邻域是由距离该点在一定半径(通常称为Eps)内的所有点组成的
  2. 定义密度:一个点的密度是其邻域内的点的数量。如果一个点的密度超过某个阈值(通常称为MinPts),则该点被视为核心点
  3. 寻找簇:从每个核心点出发,找到所有密度可达的点,即这些点通过一系列核心点可以与该核心点相连,这些点形成一个簇
  4. 标记噪声点:不属于任何簇的点被标记为噪声点

2. 创建样本数据

下面,创建三种不同的样本数据,来测试DBSCAN的聚类效果。

python 复制代码
from sklearn.datasets import make_blobs, make_moons, make_circles

fig, axes = plt.subplots(nrows=1, ncols=3)
fig.set_size_inches((9, 3))

X_moon, y_moon = make_moons(noise=0.05, n_samples=1000)
axes[0].scatter(
    X_moon[:, 0],
    X_moon[:, 1],
    marker="o",
    c=y_moon,
    s=25,
    cmap=plt.cm.spring,
)

X_circle, y_circle = make_circles(noise=0.05, factor=0.5, n_samples=1000)
axes[1].scatter(
    X_circle[:, 0],
    X_circle[:, 1],
    marker="o",
    c=y_circle,
    s=25,
    cmap=plt.cm.winter,
)

X_blob, y_blob = make_blobs(n_samples=1000, centers=3)
axes[2].scatter(
    X_blob[:, 0],
    X_blob[:, 1],
    marker="o",
    c=y_blob,
    s=25,
    cmap=plt.cm.autumn,
)

plt.show()

3. 模型训练

scikit-learnDBSCAN模型来训练,这个模型主要的参数有两个:

  1. eps (eps):这个参数表示邻域的大小,或者说是邻域的半径。具体来说,对于数据集中的每个点,其 eps-邻域 包含了所有与该点的距离小于或等于 eps 的点。
  2. min_samples (minPts):在给定 eps-邻域内,一个点需要有多少个邻居才能被视为核心点。

通过调节这2个参数,基于上面创建的样本数据,训练效果如下:

python 复制代码
from sklearn.cluster import DBSCAN

# 定义
regs = [
    DBSCAN(min_samples=2, eps=0.1),
    DBSCAN(min_samples=2, eps=0.2),
    DBSCAN(min_samples=3, eps=2),
]

# 训练模型
regs[0].fit(X_moon, y_moon)
regs[1].fit(X_circle, y_circle)
regs[2].fit(X_blob, y_blob)

fig, axes = plt.subplots(nrows=1, ncols=3)
fig.set_size_inches((9, 3))

# 绘制聚类之后的结果
axes[0].scatter(
    X_moon[:, 0],
    X_moon[:, 1],
    marker="o",
    c=regs[0].labels_,
    s=25,
    cmap=plt.cm.spring,
)

axes[1].scatter(
    X_circle[:, 0],
    X_circle[:, 1],
    marker="o",
    c=regs[1].labels_,
    s=25,
    cmap=plt.cm.winter,
)

axes[2].scatter(
    X_blob[:, 0],
    X_blob[:, 1],
    marker="o",
    c=regs[2].labels_,
    s=25,
    cmap=plt.cm.autumn,
)

plt.show()

针对3种不同的样本数据,调节参数之后,聚类的效果还不错。

感兴趣的话,可以试试修改上面代码中的DBSCAN定义部分的参数:

python 复制代码
# 定义
regs = [
    DBSCAN(min_samples=2, eps=0.1),
    DBSCAN(min_samples=2, eps=0.2),
    DBSCAN(min_samples=3, eps=2),
]

调节不同的 min_sampleeps,看看不同的聚类效果。

4. 总结

总的来说,基于密度的空间聚类 算法是一种强大的工具,能够从数据中提取有价值的信息。

但是,如同所有的算法一样,它也有其局限性,需要在合适的应用场景中使用,才能达到最佳的效果。

它的优势主要在于:

  1. 能够发现任意形状的簇
  2. 对噪声和异常值有较好的鲁棒性
  3. 不需要提前知道簇的数量

不足之处则在于:

  1. 对于高维数据,密度计算可能会变得非常复杂和计算量大
  2. 算法的性能高度依赖于密度阈值的选择
  3. 在处理密度变化较大的数据时可能效果不佳
相关推荐
汤姆yu1 小时前
基于python的化妆品销售分析系统
开发语言·python·化妆品销售分析
上去我就QWER2 小时前
Python下常用开源库
python·1024程序员节
程序员杰哥3 小时前
Pytest之收集用例规则与运行指定用例
自动化测试·软件测试·python·测试工具·职场和发展·测试用例·pytest
Jyywww1213 小时前
Python基于实战练习的知识点回顾
开发语言·python
朝朝辞暮i4 小时前
从0开始学python(day2)
python
程序员黄同学4 小时前
Python中的列表推导式、字典推导式和集合推导式的性能和应用场景?
开发语言·python
AI小云4 小时前
【Python高级编程】类和实例化
开发语言·人工智能·python
道之极万物灭4 小时前
Python uv虚拟环境管理工具详解
开发语言·python·uv
高洁014 小时前
【无标题】大模型-模型压缩:量化、剪枝、蒸馏、二值化 (2
人工智能·python·深度学习·神经网络·知识图谱