数据分析完整流程一般包括哪几个环节/步骤

  1. 问题定义: 确定需要解决的问题或目标,明确分析的方向和目的。

  2. 数据收集: 收集与问题相关的数据,可以包括从各种来源获取的结构化或非结构化数据。

  3. 数据清洗: 对收集到的数据进行清理,处理缺失值、异常值和重复值,确保数据质量。

  4. 数据探索(探索性数据分析 EDA): 探索数据的特征、分布、相关性等,通过可视化和统计方法深入了解数据。

  5. 特征工程: 对数据进行变换、组合或生成新特征,以提高模型性能或更好地反映问题的本质。

  6. 建模: 选择合适的模型,将数据划分为训练集和测试集,训练模型以解决问题。

  7. 模型评估: 评估模型的性能,使用合适的指标来衡量模型的准确性、精确度等。

  8. 模型优化: 根据评估结果对模型进行调整和优化,提高模型的性能。

  9. 结果解释和呈现: 将分析结果解释给非技术人员,以及通过可视化或报告形式呈现分析结果。

  10. 部署和监控: 如果需要,将模型部署到生产环境,并定期监控模型的性能,确保它在实际应用中有效。

相关推荐
小L爱科研2 小时前
4.7/Q1,GBD数据库最新文章解读
数据库·机器学习·数据分析·回归·健康医疗
kngines3 小时前
【PostgreSQL数据分析实战:从数据清洗到可视化全流程】金融风控分析案例-10.4 模型部署与定期评估
postgresql·数据分析·存储过程·jsonb·pg_cron·ks值·影子测试机制
想看雪的瓜3 小时前
Nature图形复现—两种快速绘制热图的方法
信息可视化·数据挖掘·数据分析
镜舟科技3 小时前
湖仓一体架构在金融典型数据分析场景中的实践
starrocks·金融·架构·数据分析·湖仓一体·物化视图·lakehouse
生信大杂烩5 小时前
R语言绘图 | 渐变火山图
数据分析·r语言
Hello world.Joey6 小时前
数据挖掘入门-二手车交易价格预测
人工智能·python·数据挖掘·数据分析·conda·pandas
kngines6 小时前
【PostgreSQL数据分析实战:从数据清洗到可视化全流程】金融风控分析案例-10.3 风险指标可视化监控
postgresql·数据分析·区块链·逾期率·不良贷款率·客户信用评分
Narutolxy15 小时前
大模型数据分析破局之路20250512
人工智能·chatgpt·数据分析
Ai尚研修-贾莲18 小时前
Python语言在地球科学交叉领域中的应用——从数据可视化到常见数据分析方法的使用【实例操作】
python·信息可视化·数据分析·地球科学
lilye6619 小时前
精益数据分析(53/126):双边市场模式指标全解析与运营策略深度探讨
数据挖掘·数据分析