基于spark的航班价格分析预测及可视化

基于spark的航班价格分析预测及可视化

项目概况

**👇👇👇👇👇👇👇👇**

点这里,查看所有项目

**👆👆👆👆👆👆👆👆**

数据类型

公开的航班价格数据

开发环境

centos7

软件版本

python3.8.18、hadoop3.2.0、spark3.1.2、mysql5.7.38、scala2.12.18、jdk8

开发语言

python、Scala

开发流程

数据上传(hdfs)->数据清洗(spark)->数据分析(spark)->机器学习(spark)->数据存储(mysql)->后端(flask)->前端(html+js+css)

可视化图表




操作步骤

python安装包

shell 复制代码
pip3 install pandas==2.0.3 -i https://mirrors.aliyun.com/pypi/simple/
pip3 install flask==3.0.0 -i https://mirrors.aliyun.com/pypi/simple/
pip3 install flask-cors==4.0.1 -i https://mirrors.aliyun.com/pypi/simple/
pip3 install pymysql==1.1.0 -i https://mirrors.aliyun.com/pypi/simple/

启动MySQL

shell 复制代码
# 查看mysql是否启动 启动命令: systemctl start mysqld.service
systemctl status mysqld.service
# 进入mysql终端
# MySQL的用户名:root 密码:123456
# MySQL的用户名:root 密码:123456
# MySQL的用户名:root 密码:123456
mysql -uroot -p123456

创建MySQL库

shell 复制代码
CREATE DATABASE IF NOT EXISTS flight CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci;

启动Hadoop

shell 复制代码
# 离开安全模式: hdfs dfsadmin -safemode leave
# 启动hadoop
bash /export/software/hadoop-3.2.0/sbin/start-hadoop.sh

准备目录

shell 复制代码
mkdir -p /data/jobs/project/
cd /data/jobs/project/

# 解压 "data" 目录下的 "data.7z" 文件
# 上传 "data" 目录下的 "CSV" 文件 到 "/data/jobs/project/" 目录

# Clean_Dataset.csv

上传文件到hdfs

shell 复制代码
cd /data/jobs/project/

hdfs dfs -mkdir -p /data/input/
hdfs dfs -rm -r /data/input/*
hdfs dfs -put -f Clean_Dataset.csv /data/input/
hdfs dfs -ls /data/input/

程序打包

shell 复制代码
cd /data/jobs/project/

# 对 "project-spark-flight-fare-data-analysis-prediction" 项目进行打包
# 打包命令: mvn clean package -Dmaven.test.skip=true
# 上传 "project-spark-flight-fare-data-analysis-prediction/target" 目录下的 "spark-job.jar" 文件 到 "/data/jobs/project/" 目录

spark数据预处理

shell 复制代码
cd /data/jobs/project/

spark-submit \
--master local[*] \
--class org.example.SparkDataClean \
/data/jobs/project/spark-job.jar /data/input/Clean_Dataset.csv /data/output/

spark数据分析

shell 复制代码
cd /data/jobs/project/

spark-submit \
--master local[*] \
--class org.example.SparkAnalysis \
/data/jobs/project/spark-job.jar /data/output/

spark机器学习

shell 复制代码
cd /data/jobs/project/

spark-submit \
--master local[*] \
--class org.example.SparkMLApp \
/data/jobs/project/spark-job.jar /data/output/

启动可视化

shell 复制代码
mkdir -p /data/jobs/project/myapp/
cd /data/jobs/project/myapp/

# 上传 "可视化" 目录下的 "所有" 文件和文件夹 到 "/data/jobs/project/" 目录

# windows本地运行: python app.py
python3 app.py pro
相关推荐
Jonathan Star24 分钟前
嵌套 Git 仓库(Submodule/子模块)
大数据·git·elasticsearch
TDengine (老段)2 小时前
从“数据堆场”到“智能底座”:TDengine IDMP如何统一数据语言
大数据·数据库·物联网·时序数据库·tdengine
新知图书2 小时前
RDD的特点、算子与创建方法
数据分析·spark·1024程序员节
liuyunshengsir2 小时前
让 Elasticsearch Delete By Query 请求立即生效
大数据·elasticsearch·jenkins
武子康2 小时前
大数据-148 Flink 写入 Kudu 实战:自定义 Sink 全流程(Flink 1.11/Kudu 1.17/Java 11)
大数据·后端·nosql
ZEERO~2 小时前
夏普比率和最大回撤公式推导及代码实现
大数据·人工智能·机器学习·金融
TTBIGDATA2 小时前
【Ambari开启Kerberos】Step1-KDC服务初始化安装-适合Ubuntu
运维·数据仓库·hadoop·ubuntu·ambari·hdp·bigtop
培培说证3 小时前
中专生做电商客服,能转电商运营吗?需要学习什么?
大数据·职场和发展
码界奇点3 小时前
时序数据库选型指南从大数据视角看IoTDB的核心优势
大数据·时序数据库·iotdb
数据超市4 小时前
快速CAD转到PPT的方法,带教程
大数据·python·科技·信息可视化·数据挖掘