用通俗易懂的方式讲解:LLM 大模型的 generate 和 chat 函数有什么区别?

在 Hugging Face 的 transformers 库中,GPT(Generative Pre-trained Transformer)类的模型有两个常用的生成文本的方法:generatechat。这两个方法在使用上有一些区别。通常公司发布的 LLM 模型会有一个基础版本,还会有一个 Chat 版本。比如,Qwen-7B(基础版本)和 Qwen-7B-Chat(Chat 版本)。

文章目录

1. generate 方法

  • generate 方法是模型的原生方法,用于生成文本。

  • 通常用于批量生成文本数据,可以根据特定的输入和条件生成一组文本。

  • 使用时需要传递一些参数,如 max_length(生成文本的最大长度)、num_beams(束搜索的数量,用于增强生成的多样性)等。

python 复制代码
from transformers import GPT2LMHeadModel, GPT2Tokenizer

model_name = "gpt2"
model = GPT2LMHeadModel.from_pretrained(model_name)
tokenizer = GPT2Tokenizer.from_pretrained(model_name)

input_text = "Once upon a time,"
generated_text = model.generate(tokenizer.encode(input_text, return_tensors="pt"), max_length=50, num_beams=5)[0]
print(tokenizer.decode(generated_text, skip_special_tokens=True))

2. chat 方法

  • chat 方法是一个高级的便捷方法,通常用于模拟对话。

  • 提供了更简单的用户交互方式,以模拟对话流程,尤其在聊天式应用中更为方便。

  • 它内部调用了 generate 方法,但提供了更加简化的输入输出接口。

python 复制代码
from transformers import GPT2LMHeadModel, GPT2Tokenizer

model_name = "gpt2"
model = GPT2LMHeadModel.from_pretrained(model_name)
tokenizer = GPT2Tokenizer.from_pretrained(model_name)

chat_history = [
    {'role':'system', 'content':'You are a helpful assistant.'},
    {'role':'user', 'content':'Who won the world series in 2020?'},
    {'role':'assistant', 'content':'The Los Angeles Dodgers won the World Series in 2020.'},
]

user_input = "Who won the Super Bowl in 2021?"
chat_history.append({'role':'user', 'content':user_input})

# 使用 chat 方法进行对话
response = model.chat(chat_history)
print(response)

总体来说,generate 方法更加灵活,适用于更多的生成任务,而 chat 方法则提供了更高级别、更易于使用的接口,适用于聊天式应用中。选择使用哪个方法通常取决于你的具体需求和使用场景。

通俗易懂讲解大模型系列

相关推荐
声网6 分钟前
B 站推进视频播客战略,「代号 H」AI创作工具同步研发;工业级开源记忆操作系统 MemOS,支持模型持续进化和自我更新丨日报
人工智能
神经星星13 分钟前
专治AI审稿?论文暗藏好评提示词,谢赛宁呼吁关注AI时代科研伦理的演变
人工智能·深度学习·机器学习
想要成为计算机高手17 分钟前
4. isaac sim4.2 教程-Core API-Hello robot
人工智能·python·机器人·英伟达·isaac sim·仿真环境
倔强的小石头_25 分钟前
AI 在生活中的应用:深度解析与技术洞察
人工智能
新加坡内哥谈技术30 分钟前
LLM探索的时代
人工智能
大熊猫侯佩35 分钟前
Swift 数学计算:用 Accelerate 框架让性能“加速吃鸡”
算法·swift
YFJ_mily1 小时前
2025第二届机电一体化、机器人与控制系统国际会议(MRCS2025)即将来袭
大数据·人工智能·机器人·机电一体化
lucky_lyovo1 小时前
深度学习--tensor(创建、属性)
人工智能·深度学习
AI大模型1 小时前
大模型炼丹术(一):从tokenizer说起,为LLM自回归预训练准备数据集
程序员·llm·agent
杰克尼1 小时前
2. 两数相加
算法