用通俗易懂的方式讲解:LLM 大模型的 generate 和 chat 函数有什么区别?

在 Hugging Face 的 transformers 库中,GPT(Generative Pre-trained Transformer)类的模型有两个常用的生成文本的方法:generatechat。这两个方法在使用上有一些区别。通常公司发布的 LLM 模型会有一个基础版本,还会有一个 Chat 版本。比如,Qwen-7B(基础版本)和 Qwen-7B-Chat(Chat 版本)。

文章目录

1. generate 方法

  • generate 方法是模型的原生方法,用于生成文本。

  • 通常用于批量生成文本数据,可以根据特定的输入和条件生成一组文本。

  • 使用时需要传递一些参数,如 max_length(生成文本的最大长度)、num_beams(束搜索的数量,用于增强生成的多样性)等。

python 复制代码
from transformers import GPT2LMHeadModel, GPT2Tokenizer

model_name = "gpt2"
model = GPT2LMHeadModel.from_pretrained(model_name)
tokenizer = GPT2Tokenizer.from_pretrained(model_name)

input_text = "Once upon a time,"
generated_text = model.generate(tokenizer.encode(input_text, return_tensors="pt"), max_length=50, num_beams=5)[0]
print(tokenizer.decode(generated_text, skip_special_tokens=True))

2. chat 方法

  • chat 方法是一个高级的便捷方法,通常用于模拟对话。

  • 提供了更简单的用户交互方式,以模拟对话流程,尤其在聊天式应用中更为方便。

  • 它内部调用了 generate 方法,但提供了更加简化的输入输出接口。

python 复制代码
from transformers import GPT2LMHeadModel, GPT2Tokenizer

model_name = "gpt2"
model = GPT2LMHeadModel.from_pretrained(model_name)
tokenizer = GPT2Tokenizer.from_pretrained(model_name)

chat_history = [
    {'role':'system', 'content':'You are a helpful assistant.'},
    {'role':'user', 'content':'Who won the world series in 2020?'},
    {'role':'assistant', 'content':'The Los Angeles Dodgers won the World Series in 2020.'},
]

user_input = "Who won the Super Bowl in 2021?"
chat_history.append({'role':'user', 'content':user_input})

# 使用 chat 方法进行对话
response = model.chat(chat_history)
print(response)

总体来说,generate 方法更加灵活,适用于更多的生成任务,而 chat 方法则提供了更高级别、更易于使用的接口,适用于聊天式应用中。选择使用哪个方法通常取决于你的具体需求和使用场景。

通俗易懂讲解大模型系列

相关推荐
gihigo199818 小时前
MATLAB数值分析方程求解方法详解
算法·机器学习·matlab
熊猫_豆豆18 小时前
用AI训练数据,预测房地产价格走势(Python版)
人工智能·ai模型·房产预测
听雨~の(>^ω^<19 小时前
OSTrack视频单目标跟踪
人工智能·目标跟踪·音视频
说私域19 小时前
基于“开源AI智能名片链动2+1模式S2B2C商城小程序”的私域用户池构建与运营研究
人工智能·小程序
海边夕阳200619 小时前
【每日一个AI小知识】:什么是多模态AI?
人工智能
songyuc21 小时前
【S2ANet】Align Deep Features for Oriented Object Detection 译读笔记
人工智能·笔记·目标检测
asdfg125896321 小时前
DETR:新一代目标检测范式综述
人工智能·目标检测·目标跟踪
程序员buddha21 小时前
C语言数组详解
c语言·开发语言·算法
doubao361 天前
如何有效降低AIGC生成内容被识别的概率?
人工智能·深度学习·自然语言处理·aigc·ai写作
SEO_juper1 天前
AEO终极指南:步步为营,提升内容的AI可见性
人工智能·ai·seo·数字营销·aeo