用通俗易懂的方式讲解:LLM 大模型的 generate 和 chat 函数有什么区别?

在 Hugging Face 的 transformers 库中,GPT(Generative Pre-trained Transformer)类的模型有两个常用的生成文本的方法:generatechat。这两个方法在使用上有一些区别。通常公司发布的 LLM 模型会有一个基础版本,还会有一个 Chat 版本。比如,Qwen-7B(基础版本)和 Qwen-7B-Chat(Chat 版本)。

文章目录

1. generate 方法

  • generate 方法是模型的原生方法,用于生成文本。

  • 通常用于批量生成文本数据,可以根据特定的输入和条件生成一组文本。

  • 使用时需要传递一些参数,如 max_length(生成文本的最大长度)、num_beams(束搜索的数量,用于增强生成的多样性)等。

python 复制代码
from transformers import GPT2LMHeadModel, GPT2Tokenizer

model_name = "gpt2"
model = GPT2LMHeadModel.from_pretrained(model_name)
tokenizer = GPT2Tokenizer.from_pretrained(model_name)

input_text = "Once upon a time,"
generated_text = model.generate(tokenizer.encode(input_text, return_tensors="pt"), max_length=50, num_beams=5)[0]
print(tokenizer.decode(generated_text, skip_special_tokens=True))

2. chat 方法

  • chat 方法是一个高级的便捷方法,通常用于模拟对话。

  • 提供了更简单的用户交互方式,以模拟对话流程,尤其在聊天式应用中更为方便。

  • 它内部调用了 generate 方法,但提供了更加简化的输入输出接口。

python 复制代码
from transformers import GPT2LMHeadModel, GPT2Tokenizer

model_name = "gpt2"
model = GPT2LMHeadModel.from_pretrained(model_name)
tokenizer = GPT2Tokenizer.from_pretrained(model_name)

chat_history = [
    {'role':'system', 'content':'You are a helpful assistant.'},
    {'role':'user', 'content':'Who won the world series in 2020?'},
    {'role':'assistant', 'content':'The Los Angeles Dodgers won the World Series in 2020.'},
]

user_input = "Who won the Super Bowl in 2021?"
chat_history.append({'role':'user', 'content':user_input})

# 使用 chat 方法进行对话
response = model.chat(chat_history)
print(response)

总体来说,generate 方法更加灵活,适用于更多的生成任务,而 chat 方法则提供了更高级别、更易于使用的接口,适用于聊天式应用中。选择使用哪个方法通常取决于你的具体需求和使用场景。

通俗易懂讲解大模型系列

相关推荐
sali-tec3 分钟前
C# 基于OpenCv的视觉工作流-章25-ORB特征点
图像处理·人工智能·opencv·算法·计算机视觉
半兽先生22 分钟前
告别 AI 乱写 Vue!用 vue-skills 构建前端智能编码标准
前端·vue.js·人工智能
摇滚侠28 分钟前
JWT 是 token 的一种格式,我的理解对吗?
java·人工智能·intellij-idea·spring ai·springaialibaba
jghhh011 小时前
LT喷泉码编解码的MATLAB实现
数据库·算法·matlab
被遗忘在角落的死小孩1 小时前
抗量子 Winternitz One Time Signature(OTS) 算法学习
学习·算法·哈希算法
浅念-1 小时前
C++ :类和对象(4)
c语言·开发语言·c++·经验分享·笔记·学习·算法
YunchengLi1 小时前
【移动机器人运动规划】5 基于优化的轨迹规划 Part2
算法·机器人
yuuki2332331 小时前
【C++】模拟实现 AVL树
java·c++·算法
xixixi777771 小时前
零样本学习 (Zero-Shot Learning, ZSL)补充
人工智能·学习·安全·ai·零样本·模型训练·训练
olivesun882 小时前
AI的第一篇编码实践-如何用RAG和LLM
人工智能