用通俗易懂的方式讲解:LLM 大模型的 generate 和 chat 函数有什么区别?

在 Hugging Face 的 transformers 库中,GPT(Generative Pre-trained Transformer)类的模型有两个常用的生成文本的方法:generatechat。这两个方法在使用上有一些区别。通常公司发布的 LLM 模型会有一个基础版本,还会有一个 Chat 版本。比如,Qwen-7B(基础版本)和 Qwen-7B-Chat(Chat 版本)。

文章目录

1. generate 方法

  • generate 方法是模型的原生方法,用于生成文本。

  • 通常用于批量生成文本数据,可以根据特定的输入和条件生成一组文本。

  • 使用时需要传递一些参数,如 max_length(生成文本的最大长度)、num_beams(束搜索的数量,用于增强生成的多样性)等。

python 复制代码
from transformers import GPT2LMHeadModel, GPT2Tokenizer

model_name = "gpt2"
model = GPT2LMHeadModel.from_pretrained(model_name)
tokenizer = GPT2Tokenizer.from_pretrained(model_name)

input_text = "Once upon a time,"
generated_text = model.generate(tokenizer.encode(input_text, return_tensors="pt"), max_length=50, num_beams=5)[0]
print(tokenizer.decode(generated_text, skip_special_tokens=True))

2. chat 方法

  • chat 方法是一个高级的便捷方法,通常用于模拟对话。

  • 提供了更简单的用户交互方式,以模拟对话流程,尤其在聊天式应用中更为方便。

  • 它内部调用了 generate 方法,但提供了更加简化的输入输出接口。

python 复制代码
from transformers import GPT2LMHeadModel, GPT2Tokenizer

model_name = "gpt2"
model = GPT2LMHeadModel.from_pretrained(model_name)
tokenizer = GPT2Tokenizer.from_pretrained(model_name)

chat_history = [
    {'role':'system', 'content':'You are a helpful assistant.'},
    {'role':'user', 'content':'Who won the world series in 2020?'},
    {'role':'assistant', 'content':'The Los Angeles Dodgers won the World Series in 2020.'},
]

user_input = "Who won the Super Bowl in 2021?"
chat_history.append({'role':'user', 'content':user_input})

# 使用 chat 方法进行对话
response = model.chat(chat_history)
print(response)

总体来说,generate 方法更加灵活,适用于更多的生成任务,而 chat 方法则提供了更高级别、更易于使用的接口,适用于聊天式应用中。选择使用哪个方法通常取决于你的具体需求和使用场景。

通俗易懂讲解大模型系列

相关推荐
LaughingZhu37 分钟前
Product Hunt 每日热榜 | 2025-10-11
人工智能·经验分享·搜索引擎·产品运营
西阳未落1 小时前
LeetCode——双指针
c++·算法
深度学习机器1 小时前
AI Agent上下文工程设计指南|附实用工具推荐
langchain·llm·agent
视觉语言导航2 小时前
CoRL-2025 | 物体相对控制赋能具身导航!ObjectReact:学习用于视觉导航的物体相对控制
人工智能·具身智能
胖咕噜的稞达鸭2 小时前
C++中的父继子承:继承方式实现栈及同名隐藏和函数重载的本质区别, 派生类的4个默认成员函数
java·c语言·开发语言·数据结构·c++·redis·算法
Chat_zhanggong3452 小时前
HI3516CV610-20S开发板
人工智能·嵌入式硬件·编辑器
笑口常开xpr2 小时前
【C++】模板 - - - 泛型编程的魔法模具,一键生成各类代码
开发语言·数据结构·c++·算法
莫***先2 小时前
鼎锋优配股票杠杆AI应用软件股走强,Figma涨幅超14%,Confluent涨超10%
人工智能·figma
泥烟2 小时前
使用Milvus和DeepSeek构建RAG demo
大模型·milvus·deepseek
数在表哥2 小时前
从数据沼泽到智能决策:数据驱动与AI融合的中台建设方法论与技术实践指南(四)
大数据·人工智能