使用Sobel算子把视频转换为只剩边缘部分

效果展示

原始视频

修改后的视频

整体代码

python 复制代码
import cv2

vc = cv2.VideoCapture('test.mp4')

if vc.isOpened():
    open, frame = vc.read()
else:
    open = False

i = 0
while open:
    ret, frame = vc.read()
    if frame is None:
        break
    if ret == True:
        i += 1
        # 转换为灰度图
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        # 使用Sobel进行边缘处理
        sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=3)
        sobelx = cv2.convertScaleAbs(sobelx)

        sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=3)
        sobely = cv2.convertScaleAbs(sobely)
        # 合起来
        sobelxy = cv2.addWeighted(sobelx, 0.5, sobely, 0.5, 0)
        cv2.imshow('result', sobelxy)
        # 0.1s 0xFF表示键盘上的Esc键
        if cv2.waitKey(100) & 0xFF == 27:
            break

# 释放硬件资源
vc.release()
# 清除所有窗口
cv2.destroyAllWindows()

代码解释

python 复制代码
sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=3)

Sobel(src, ddepth, dx, dy, ksize)

①dx和dy分别表示水平和竖直方向

②ddepth一般为-1,表示和原图像一样的深度

上面的cv2.CV_64F代表的是深度,可以保存负数,是特殊的用法

③ksize表示卷积核大小(算子大小)

④src表示传入图像


python 复制代码
sobelxy = cv2.addWeighted(sobelx, 0.5, sobely, 0.5, 0)

把x和y方向的求和,获得整体的边缘图像

sobelx和sobely则是你通过Sobel计算的图像

0.5表示的是权值(占比)

0表示的是偏置项,为0即可


python 复制代码
        if cv2.waitKey(100) & 0xFF == 27:
            break

这里的0xFF == 27 表示的是键盘上的Esc键


python 复制代码
sobelx = cv2.convertScaleAbs(sobelx)

把负数变成正数,防止被截断为0 因为默认的时候负数会被转换为0

相关推荐
xingqing87y5 分钟前
影视解说制作教程:如何去除视频原音,添加配音和字幕
音视频
忠实米线16 分钟前
使用JSMpeg实现移动端播放自动视频
音视频
LeeZhao@21 分钟前
【狂飙全模态】狂飙AGI-智能视频生成助手
人工智能·redis·语言模型·音视频·agi
深度学习lover25 分钟前
<数据集>yolo茶叶嫩芽识别数据集<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·茶叶嫩芽识别
kkk_皮蛋43 分钟前
深入理解 WebRTC 视频质量降级机制
网络·音视频·webrtc
AI视觉网奇1 小时前
live2d 全身数字人
人工智能·计算机视觉
c#上位机1 小时前
halcon刚性变换(平移+旋转)——vector_angle_to_rigid
人工智能·计算机视觉·c#·上位机·halcon·机器视觉
做cv的小昊1 小时前
VLM相关论文阅读:【LoRA】Low-rank Adaptation of Large Language Models
论文阅读·人工智能·深度学习·计算机视觉·语言模型·自然语言处理·transformer
CoookeCola2 小时前
离线视频水印清除工具:手动选定位置(ROI)与强制修复功能详解,支持命令行ROI定位
网络·图像处理·opencv·计算机视觉·开源·github·音视频
AI即插即用2 小时前
即插即用系列 | CVPR 2024 FADC:频域自适应空洞卷积,完美解决语义分割“网格效应”
图像处理·人工智能·深度学习·目标检测·计算机视觉·视觉检测