Redis与DB数据一致性-个人总结

缓存读写策略:

Cache-Aside Pattern

读缓存: 先查询缓存,存在则返回, 如果不存在则查询DB, 再塞回缓存中,最后返回结果.

写缓存: 更新完成DB之后,删除缓存.

适合场景: 读比较多的场景,更新比较少的场景. 像我们工作当中,基础配置系统, 公私钥管理系统就是这种.

Read/Write Through Pattern

读缓存: 先查询缓存,存在则返回, 如果不存在则查询DB, 再塞回缓存中,最后返回结果.

写缓存:

更新完数据库;

更新成功之后, 更新缓存; 如果更新失败,则不更新缓存;

适用场景:

Write behind Pattern

读缓存: 先查询缓存,存在则返回, 如果不存在则查询DB, 再塞回缓存中, 最后返回结果.

写缓存:

更新缓存;

每隔一段时间,同步缓存信息到数据库;

适用场景:

缓存穿透是指查询一个不存在的key, 如果缓存中不存在,则查询数据库; 如果大量的请求过来,导致大量无效的key过来,则会导致数据库压力较大.

解决方案: 给不存在的key,设置一个标识,设置缓存key为一个特定的标识,这个标识表示key不存在.

缓存击穿是指批量缓存key在同一时间失效,导致请求在缓存中查询不到,直接查询数据库. 导致数据库压力较大.

解决方案: 缓存失效时间设定随机值,尽量避免无故失效;

//TODO

参考:

一文搞懂缓存和数据库的一致性问题(全面总结)_数据库缓存一致性-CSDN博客

相关推荐
KYGALYX24 分钟前
在Linux中备份msyql数据库和表的详细操作
linux·运维·数据库
檀越剑指大厂37 分钟前
金仓KReplay:定义数据库平滑迁移新标准
数据库
努力成为一个程序猿.1 小时前
【Flink】FlinkSQL-动态表和持续查询概念
大数据·数据库·flink
JJCar1 小时前
【Cache缓存】cache的刷新
缓存·cache·多核数据一致性
毕设十刻2 小时前
基于Vue的学分预警系统98k51(程序 + 源码 + 数据库 + 调试部署 + 开发环境配置),配套论文文档字数达万字以上,文末可获取,系统界面展示置于文末
前端·数据库·vue.js
陈果然DeepVersion2 小时前
Java大厂面试真题:Spring Boot+微服务+AI智能客服三轮技术拷问实录(六)
java·spring boot·redis·微服务·面试题·rag·ai智能客服
liliangcsdn2 小时前
如何利用约束提示优化LLM在问题转sql的一致性
数据库·sql
Java爱好狂.3 小时前
分布式ID|从源码角度深度解析美团Leaf双Buffer优化方案
java·数据库·分布式·分布式id·es·java面试·java程序员
Elastic 中国社区官方博客3 小时前
通过混合搜索重排序提升多语言嵌入模型的相关性
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
倔强的石头1064 小时前
KingbaseES:从兼容到超越,详解超越MySQL的权限隔离与安全增强
数据库·mysql·安全·金仓数据库