推荐系统模型(一) DFN 详解 Deep Feedback Network for Recommendation

背景

在大多数的推荐系统中,往往注重于隐式正反馈(例如:点击),而忽略掉用户的其他行为(例如大多数CTR模型只考虑用户的喜欢,而忽略了不喜欢)。腾讯在Deep Feedback Network for Recommendation 一文中,提出了一个新颖的推荐系统模型,该模型使用了一个新的神经网络框架,考虑了用户显式/隐式的正负反馈,通过大量的实验证实了该模型的有效性和鲁棒性。

先验知识

  1. 显式反馈(explicit feedback)

例如: 用户对某商品/item的评分,或者明确的喜欢/不喜欢。

特点: 质量高,能够很明确的表达用户的喜好,但是数据非常稀疏。

  1. 隐式反馈(implicit feedback)

隐式正反馈(implicit positive feedback): 例如 点击 行为。

隐式负反馈(implicit negative feedback): 例如 浏览(曝光)但是未点击 行为。

特点: 数据量多,但是噪声特别多。例如: 用户没有点击的也不一定是他不喜欢的。还有一点非常重要,推荐系统推荐给用户的item,即使没被点击,但是也可能是用户喜欢的,也可能包含了用户感兴趣的部分,这在后面的网络模型中,有体现。

方法

定义:

模型框架:

DFN网络如下图所示,主要有两部分组成:

(1)the deep feedback interaction module(右图).

在这一模块内,使用多种类型的反馈作为输入,通过这些反馈的交互,提取出用户对于target item的偏好(喜欢或者不喜欢)。

(2)feature interaction module.

在提炼出feed back feature之后,通过使用Wide,FM,Deep等三种策略,让特征之间进行交互。

现在让我们来关注一下deep feedback interaction module部分。

Deep feedback interaction module详解

在这一模块中,可细分为Internal Feedback Interaction Component(红色方框) 和 External Feedback Interaction Component(绿色方框)两部分,为了方便叙述,我们以下简称为Internal部分和External部分。

Internal Feedback Interaction Component

在Internal部分中,关注于target item与用户各种行为的交互,在这里的所有行为当中,都使用了多头注意力机制。所有的行为embedding由物品的embedding和位置embedding组成。我们使用点击行为click做一个举例。

通过将target item

与点击行为序列组合在一起,构成我们的输入矩阵

External Feedback Interaction Component

在external部分,旨在根据高质量的click和dislike等行为,在unclick行为中,找出用户真的喜欢和不喜欢的。所以使用了两个vanilla attention中,将、分别与产生交互,来为未点击的序列判断喜欢或者不喜欢的偏好。

Feature Interaction module详解

损失函数(优化目标)

相关推荐
陈敬雷-充电了么-CEO兼CTO10 小时前
推荐算法系统系列>推荐数据仓库集市的ETL数据处理
大数据·数据库·数据仓库·数据挖掘·数据分析·etl·推荐算法
快手技术14 天前
效果&成本双突破!快手提出端到端生成式推荐系统OneRec!
人工智能·深度学习·大模型·推荐算法
code喵喵17 天前
八种数据结构简介
数据结构·算法·推荐算法
@解忧杂货铺20 天前
基于用户的协同过滤推荐算法实现(Java电商平台)
算法·机器学习·推荐算法
白熊18821 天前
【推荐算法】注意力机制与兴趣演化:推荐系统如何抓住用户的心?
算法·php·推荐算法
A达峰绮22 天前
AI时代的行业重构:机遇、挑战与生存法则
大数据·人工智能·经验分享·ai·推荐算法
白熊1881 个月前
【推荐算法】DeepFM:特征交叉建模的革命性架构
算法·架构·推荐算法
白熊1881 个月前
【推荐算法】NeuralCF:深度学习重构协同过滤的革命性突破
深度学习·重构·推荐算法
白熊1881 个月前
【推荐算法】Embedding+MLP:TensorFlow实现经典深度学习推荐模型详解
深度学习·embedding·推荐算法