深度学习记录--指数加权平均

指数加权移动平均(exponentially weighted moving averages)

如何对杂乱的数据进行拟合?

通过指数加权平均可以把数据图近似拟合成一条曲线

公式:

其中表示第t个平均数,表示第t-1个平均数,表示第t个数据,表示变化参数

下图为拟合结果()

当参数变化时,拟合结果也会发生变化

例子:
时,近似取10个数据平均值(红色曲线)

时,近似取50个数据平均值(绿色曲线)

时,近似取2个数据平均值(黄色曲线)

从上图三条曲线可知

参数的取值对拟合结果的影响很大,那么有什么规律?

较大 时,拟合结果更加平稳,因为取的是更多数据的平均值

较小 时,拟合结果波动较大,因为取的是更少数据的平均值

公式:

这个公式可以用来计算采样数据的数量

较大时,公式值较大,即取的更多数据的平均值

优点:
减少内存占用,只需一行代码实现重复更新

python 复制代码
v=0
beta=0.9
theta=[1,2,4,5,6,8,10,14,18,22]
# theta[i]代表当前数据
for i in range(0,10):
    v=beta*v+(1-beta)*theta[i]
    print("v",i+1," = ",v)

偏差修正(bias correction)

较大时,初期数据拟合可能偏差较大,为了更好地拟合初期的数据,故采用偏差修正

所得到的v值进行进一步的处理:

,其中t为天数

故当t较小时,可以被适当放大,更加拟合数据

当t变大,分母逐渐趋于1,所以后阶段偏差修正作用不大

总而言之,偏差修正是一种针对初期数据的修正偏差的方法

相关推荐
顾北121 小时前
MCP协议实战|Spring AI + 高德地图工具集成教程
人工智能
wfeqhfxz25887821 小时前
毒蝇伞品种识别与分类_Centernet模型优化实战
人工智能·分类·数据挖掘
中杯可乐多加冰1 小时前
RAG 深度实践系列(七):从“能用”到“好用”——RAG 系统优化与效果评估
人工智能·大模型·llm·大语言模型·rag·检索增强生成
珠海西格电力科技2 小时前
微电网系统架构设计:并网/孤岛双模式运行与控制策略
网络·人工智能·物联网·系统架构·云计算·智慧城市
FreeBuf_2 小时前
AI扩大攻击面,大国博弈引发安全新挑战
人工智能·安全·chatgpt
数研小生2 小时前
构建命令行单词记忆工具:JSON 词库与艾宾浩斯复习算法的完美结合
算法·json
芒克芒克2 小时前
LeetCode 题解:除自身以外数组的乘积
算法·leetcode
Python 老手3 小时前
Python while 循环 极简核心讲解
java·python·算法
@Aurora.3 小时前
优选算法【专题九:哈希表】
算法·哈希算法·散列表
weisian1513 小时前
进阶篇-8-数学篇-7--特征值与特征向量:AI特征提取的核心逻辑
人工智能·pca·特征值·特征向量·降维