深度学习记录--指数加权平均

指数加权移动平均(exponentially weighted moving averages)

如何对杂乱的数据进行拟合?

通过指数加权平均可以把数据图近似拟合成一条曲线

公式:

其中表示第t个平均数,表示第t-1个平均数,表示第t个数据,表示变化参数

下图为拟合结果()

当参数变化时,拟合结果也会发生变化

例子:
时,近似取10个数据平均值(红色曲线)

时,近似取50个数据平均值(绿色曲线)

时,近似取2个数据平均值(黄色曲线)

从上图三条曲线可知

参数的取值对拟合结果的影响很大,那么有什么规律?

较大 时,拟合结果更加平稳,因为取的是更多数据的平均值

较小 时,拟合结果波动较大,因为取的是更少数据的平均值

公式:

这个公式可以用来计算采样数据的数量

较大时,公式值较大,即取的更多数据的平均值

优点:
减少内存占用,只需一行代码实现重复更新

python 复制代码
v=0
beta=0.9
theta=[1,2,4,5,6,8,10,14,18,22]
# theta[i]代表当前数据
for i in range(0,10):
    v=beta*v+(1-beta)*theta[i]
    print("v",i+1," = ",v)

偏差修正(bias correction)

较大时,初期数据拟合可能偏差较大,为了更好地拟合初期的数据,故采用偏差修正

所得到的v值进行进一步的处理:

,其中t为天数

故当t较小时,可以被适当放大,更加拟合数据

当t变大,分母逐渐趋于1,所以后阶段偏差修正作用不大

总而言之,偏差修正是一种针对初期数据的修正偏差的方法

相关推荐
松涛和鸣8 分钟前
DAY38 TCP Network Programming
linux·网络·数据库·网络协议·tcp/ip·算法
ss27312 分钟前
ThreadPoolExecutor七大核心参数:从源码看线程池的设计
java·数据库·算法
好奇龙猫16 分钟前
人工智能学习-AI-MIT公开课-第三节:推理:目标树与基于规则的专家系统-笔记
人工智能·笔记·学习
正经人_x18 分钟前
学习日记28:Run, Don’t Walk: Chasing Higher FLOPS for Faster Neural Networks
人工智能·深度学习·cnn
好奇龙猫18 分钟前
【AI学习-comfyUI学习-第二十节-controlnet线稿+softedge线稿处理器工作流艺术线处理器工作流-各个部分学习】
人工智能·学习
qq_4335545423 分钟前
C++ 状压DP(01矩阵约束问题)
c++·算法·矩阵
虫小宝23 分钟前
返利app排行榜系统设计:基于大数据计算的实时排名算法实现
大数据·算法
陈橘又青25 分钟前
vLLM-Ascend推理部署与性能调优深度实战指南:架构解析、环境搭建与核心配置
人工智能·后端·ai·架构·restful·数据·vllm
世优科技虚拟人25 分钟前
AI数字人企业产品图谱解析:2D/3D数字人AI交互开发技术指南
人工智能·大模型·人机交互·数字人·智能交互
C雨后彩虹27 分钟前
字符串拼接
java·数据结构·算法·华为·面试