深度学习|9.7迁移学习transfer learning

文章目录

迁移学习

迁移学习的定义

迁移学习是指将针对某项任务学习到的知识应用到其他任务的问题解决中去。

如何实现迁移学习

可以下载别人训练好的网络,保留网络中训练好的参数(参数分两种,一种是人为设置好的超参数,另外一种是在训练过程中学习/调整到的参数)

注意的是,原先训练好的网络可能会有多个输出结果,而某次任务所需的结果可能只是其中的一个子集,也就是说需要修改原先的softmax层,也就是说,

也可以去掉一些层,然后进行训练。

为什么要选择迁移学习?

可以站在巨人的肩膀上,省去了训练过程所消耗的时间,从而加速完成自己的分类目标。

训练的过程并不是一个一蹴而就的过程,是一个相对漫长的过程,因为训练所需要用到的数据集可能是很大的,提取信息本身也消耗时间,数据在层内进行计算,层间传递也是需要时间。

相关推荐
johnny23313 小时前
AI工作流编排平台
人工智能
百***354813 小时前
DeepSeek在情感分析中的细粒度识别
人工智能
Qzkj66614 小时前
从规则到智能:企业数据分类分级的先进实践与自动化转型
大数据·人工智能·自动化
weixin79893765432...14 小时前
React + Fastify + DeepSeek 实现一个简单的对话式 AI 应用
人工智能·react.js·fastify
大千AI助手14 小时前
概率单位回归(Probit Regression)详解
人工智能·机器学习·数据挖掘·回归·大千ai助手·概率单位回归·probit回归
adjusttraining14 小时前
毁掉孩子视力不是电视和手机,两个隐藏很深因素,很多家长并不知
深度学习·其他
狂炫冰美式15 小时前
3天,1人,从0到付费产品:AI时代个人开发者的生存指南
前端·人工智能·后端
LCG元15 小时前
垂直Agent才是未来:详解让大模型"专业对口"的三大核心技术
人工智能
我不是QI16 小时前
周志华《机器学习—西瓜书》二
人工智能·安全·机器学习
操练起来16 小时前
【昇腾CANN训练营·第八期】Ascend C生态兼容:基于PyTorch Adapter的自定义算子注册与自动微分实现
人工智能·pytorch·acl·昇腾·cann