深度学习|9.7迁移学习transfer learning

文章目录

迁移学习

迁移学习的定义

迁移学习是指将针对某项任务学习到的知识应用到其他任务的问题解决中去。

如何实现迁移学习

可以下载别人训练好的网络,保留网络中训练好的参数(参数分两种,一种是人为设置好的超参数,另外一种是在训练过程中学习/调整到的参数)

注意的是,原先训练好的网络可能会有多个输出结果,而某次任务所需的结果可能只是其中的一个子集,也就是说需要修改原先的softmax层,也就是说,

也可以去掉一些层,然后进行训练。

为什么要选择迁移学习?

可以站在巨人的肩膀上,省去了训练过程所消耗的时间,从而加速完成自己的分类目标。

训练的过程并不是一个一蹴而就的过程,是一个相对漫长的过程,因为训练所需要用到的数据集可能是很大的,提取信息本身也消耗时间,数据在层内进行计算,层间传递也是需要时间。

相关推荐
rongcj4 分钟前
2026,“硅基经济”的时代正在悄然来临
人工智能
狼叔也疯狂6 分钟前
英语启蒙SSS绘本第一辑50册高清PDF可打印
人工智能·全文检索
万行32 分钟前
机器学习&第四章支持向量机
人工智能·机器学习·支持向量机
幻云201037 分钟前
Next.js之道:从入门到精通
人工智能·python
予枫的编程笔记41 分钟前
【Java集合】深入浅出 Java HashMap:从链表到红黑树的“进化”之路
java·开发语言·数据结构·人工智能·链表·哈希算法
llddycidy43 分钟前
峰值需求预测中的机器学习:基础、趋势和见解(最新文献)
网络·人工智能·深度学习
larance44 分钟前
机器学习的一些基本知识
人工智能·机器学习
l1t1 小时前
利用DeepSeek辅助拉取GitHub存储库目录跳过特定文件方法
人工智能·github·deepseek
12344521 小时前
Agent入门实战-一个题目生成Agent
人工智能·后端
IT_陈寒1 小时前
Java性能调优实战:5个被低估却提升30%效率的JVM参数
前端·人工智能·后端