MapReduce概述

文章目录

      • [1. 分布式系统的驱动力和挑战](#1. 分布式系统的驱动力和挑战)
      • [2. 分布式系统的抽象和实现工具](#2. 分布式系统的抽象和实现工具)
      • [3. 可扩展性、可用性、一致性](#3. 可扩展性、可用性、一致性)
      • [4. MapReduce基本工作方式](#4. MapReduce基本工作方式)
      • [5. Map函数和Reduce函数](#5. Map函数和Reduce函数)

1. 分布式系统的驱动力和挑战

分布式系统的核心是通过网络来协调,共同完成一致任务的一些计算机。

构建分布式系统的目的:

  • 高性能
  • 容错
  • 一些问题天然在空间上是分布的。例如银行转账。
  • 构建分布式系统来达成一些安全的目标。

这门课程中,我们主要会讨论前两点:性能和容错

分布式系统的问题(挑战)在于:

  • 系统中存在很多部分,这些部分又在并发执行,你会遇到并发编程和各种复杂交互所带来的问题。
  • 分布式系统有多个组成部分,再加上计算机网络,你会会遇到一些意想不到的故障。
  • 人们设计分布式系统的根本原因通常是为了获得更高的性能,比如说一千台计算机或者一千个磁盘臂达到的性能。但是实际上一千台机器到底有多少性能是一个棘手的问题,这里有很多难点。

2. 分布式系统的抽象和实现工具

我们课程中主要介绍的一些基础架构。基础架构的类型主要是存储通信 (网络)和计算 。我们会讨论包含所有这三个部分的基础设施,但实际上我们最关注的是存储,因为这是一个定义明确且有用的抽象概念,并且通常比较直观。我们希望构建一个接口,它看起来就像一个非分布式存储和计算系统一样,但是实际上又是一个有极高的性能和容错性的分布式系统。

当我们在考虑这些抽象的时候,第一个出现的话题就是实现。人们在构建分布系统时,使用了很多的工具,例如:

  • RPC(Remote Procedure Call)。RPC的目标就是掩盖我们正在不可靠网络上通信的事实。
  • 另一个我们会经常看到的实现相关的内容就是线程。
  • 因为我们会经常用到线程,我们需要在实现的层面上,花费一定的时间来考虑并发控制,比如锁。

3. 可扩展性、可用性、一致性

可扩展性:

我们希望可以通过增加机器的方式来实现扩展,但是现实中这很难实现,需要一些架构设计来将这个可扩展性无限推进下去。
可用性:

大型分布式系统中有一个大问题,那就是一些很罕见的问题会被放大。因为错误总会发生,必须要在设计时就考虑,系统能够屏蔽错误,或者说能够在出错时继续运行。

除了可用性之外,另一种容错特性是自我可恢复性(recoverability)。这里的意思是,如果出现了问题,服务会停止工作,不再响应请求,之后有人来修复,并且在修复之后系统仍然可以正常运行,就像没有出现过问题一样。这是一个比可用性更弱的需求。

为了实现这些特性,有很多工具。其中最重要的有两个:

  • 一个是非易失存储(non-volatile storage,类似于硬盘)。这样当出现类似电源故障,甚至整个机房的电源都故障时,我们可以使用非易失存储,比如硬盘,闪存,SSD之类的。
  • 对于容错的另一个重要工具是复制(replication),不过,管理复制的多副本系统会有些棘手。现在的关键问题在于,这两个副本总是会意外的偏离同步的状态,而不再互为副本。对于任何一种使用复制实现容错的系统,我们都面临这个问题。

一致性:

从性能和容错的角度来说,我们通常会有多个副本。假设服务器有两个副本,那么他们都有一个key-value表单,两个表单中key 1对应的值都是20。现在某个客户端发送了一个put请求,并希望将key 1改成值21。之后会发送给第二台服务器,因为相同的put请求需要发送给两个副本,这样这两个副本才能保持同步。但是就在客户端准备给第二台服务器发送相同请求时,这个客户端故障了,可能是电源故障或者操作系统的bug之类的。所以,现在我们处于一个不好的状态,我们发送了一个put请求,更新了一个副本的值是21,但是另一个副本的值仍然是20。如果现在某人通过get读取key为1的值,那么他可能获得21,也可能获得20,取决于get请求发送到了哪个服务器。即使规定了总是把请求先发送给第一个服务器,那么我们在构建容错系统时,如果第一台服务器故障了,请求也会发给第二台服务器。

比如说get请求可以得到最近一次完成的put请求写入的值。这种一般也被称为强一致(Strong Consistency)。但是,事实上,构建一个弱一致的系统也是非常有用的。弱一致是指,不保证get请求可以得到最近一次完成的put请求写入的值。

人们对于弱一致感兴趣的原因是,虽然强一致可以确保get获取的是最新的数据,但是实现这一点的代价非常高。人们常常会使用弱一致系统,你只需要更新最近的数据副本,并且只需要从最近的副本获取数据。在学术界和现实世界(工业界),有大量关于构建弱一致性保证的研究。所以,弱一致对于应用程序来说很有用,并且它可以用来获取高的性能。

4. MapReduce基本工作方式

MapReduce是由Google设计,开发和使用的一个系统,相关的论文在2004年发表。Google当时面临的问题是,他们需要在TB级别的数据上进行大量的计算。

背景:当时Google需要一种框架,使得普通工程师也可以很容易的完成并运行大规模的分布式运算。工程师只需要实现应用程序的核心,就能将应用程序运行在数千台计算机上,而不用考虑如何将运算工作分发到数千台计算机,如何组织这些计算机,如何移动数据,如何处理故障等等这些细节。

MapReduce的思想是,应用程序设计人员和分布式运算的使用者,只需要写简单的Map函数和Reduce函数,而不需要知道任何有关分布式的事情,MapReduce框架会处理剩下的事情。

MapReduce假设有一些输入,这些输入被分割成大量的不同的文件或者数据块。MapReduce启动时,会查找Map函数。之后,MapReduce框架会为每个输入文件运行Map函数。

Map函数以文件作为输入 ,文件又是整个输入数据的一部分。Map函数的输出是一个key-value对的列表。假设我们在实现一个最简单的MapReduce Job:单词计数器。它会统计每个单词出现的次数。在这个例子中,Map函数会输出key-value对,其中key是单词,而value是1。Map函数会将输入中的每个单词拆分,并输出一个key-value对,key是该单词,value是1。最后需要对所有的key-value进行计数,以获得最终的输出。所以,假设输入文件1包含了单词a和单词b,Map函数的输出将会是key=a,value=1和key=b,value=1。第二个Map函数只从输入文件2看到了b,那么输出将会是key=b,value=1。第三个输入文件有一个a和一个c。

我们对所有的输入文件都运行了Map函数,并得到了论文中称之为中间输出 (intermediate output),也就是每个Map函数输出的key-value对。

运算的第二阶段是运行Reduce函数。MapReduce框架会收集所有Map函数输出的每一个单词的统计。比如说,MapReduce框架会先收集每一个Map函数输出的key为a的key-value对。收集了之后,会将它们提交给Reduce函数。我们收集所有的b,并将它们提交给另一个Reduce函数。这个Reduce函数的入参是所有的key为b的key-value对。对c也是一样。所以,MapReduce框架会为所有Map函数输出的每一个key,调用一次Reduce函数。

Reduce函数只需要统计传入参数的长度,甚至都不用查看传入参数的具体内容,因为每一个传入参数代表对单词加1,而我们只需要统计个数。最后,每个Reduce都输出与其关联的单词和这个单词的数量。所以第一个Reduce输出a=2,第二个Reduce输出b=2,第三个Reduce输出c=1。

这就是一个典型的MapReduce Job。从整体来看,为了保证完整性,有一些术语要介绍一下:

  • Job。整个MapReduce计算称为Job。
  • Task。每一次MapReduce调用称为Task。

所以,对于一个完整的MapReduce Job,它由一些Map Task和一些Reduce Task组成。所以这是一个单词计数器的例子,它解释了MapReduce的基本工作方式。

5. Map函数和Reduce函数

Map函数使用一个key和一个value作为参数。入参中,key是输入文件的名字,通常会被忽略,因为我们不太关心文件名是什么,value是输入文件的内容 。对于一个单词计数器来说,value包含了要统计的文本,我们会将这个文本拆分成单词。之后对于每一个单词,我们都会调用emit。emit由MapReduce框架提供,并且这里的emit属于Map函数。emit会接收两个参数,其中一个是key,另一个是value。在单词计数器的例子中,emit入参的key是单词,value是字符串"1"。这就是一个Map函数。Map函数中调用emit的效果是在worker的本地磁盘上创建文件,这些文件包含了当前worker的Map函数生成的所有的key和value。

Reduce函数的入参是某个特定key的所有实例。所以Reduce函数也是使用一个key和一个value作为参数,其中value是一个数组,里面每一个元素是Map函数输出的key的一个实例的value。对于单词计数器来说,key就是单词,value就是由字符串"1"组成的数组,所以,我们不需要关心value的内容是什么,我们只需要关心value数组的长度。Reduce函数也有一个属于自己的emit函数。这里的emit函数只会接受一个参数value,这个value会作为Reduce函数入参的key的最终输出。所以,对于单词计数器,我们会给emit传入数组的长度。这就是一个最简单的Reduce函数。一旦worker收集完所有的数据,它会调用Reduce函数,Reduce函数运算完了会调用自己的emit,这个emit与Map函数中的emit不一样,它会将输出写入到一个Google使用的共享文件服务中。

相关推荐
Ase5gqe6 小时前
大数据-259 离线数仓 - Griffin架构 修改配置 pom.xml sparkProperties 编译启动
xml·大数据·架构
史嘉庆6 小时前
Pandas 数据分析(二)【股票数据】
大数据·数据分析·pandas
唯余木叶下弦声7 小时前
PySpark之金融数据分析(Spark RDD、SQL练习题)
大数据·python·sql·数据分析·spark·pyspark
重生之Java再爱我一次8 小时前
Hadoop集群搭建
大数据·hadoop·分布式
豪越大豪10 小时前
2024年智慧消防一体化安全管控年度回顾与2025年预测
大数据·科技·运维开发
互联网资讯10 小时前
详解共享WiFi小程序怎么弄!
大数据·运维·网络·人工智能·小程序·生活
AI2AGI12 小时前
天天AI-20250121:全面解读 AI 实践课程:动手学大模型(含PDF课件)
大数据·人工智能·百度·ai·文心一言
贾贾202312 小时前
配电自动化中的进线监控技术
大数据·运维·网络·自动化·能源·制造·信息与通信
sci_ei12313 小时前
高水平EI会议-第四届机器学习、云计算与智能挖掘国际会议
数据结构·人工智能·算法·机器学习·数据挖掘·机器人·云计算