C4.5决策树的基本建模流程

C4.5决策树的基本建模流程

作为ID3算法的升级版,C4.5在三个方面对ID3进行了优化:

(1)它引入了信息值(information value)的概念来修正信息熵的计算结果,以抑制ID3更偏向于选择具有更多分类水平的列进行展开的情况,从而间接地抑制模型过拟合的倾向;

(2)C4.5新增了对连续变量的处理方法,采用类似于CART树的方法来寻找相邻取值的中间值作为切分点;

(3)C4.5加入了决策树的剪枝流程,以进一步提升模型的泛化能力。

然而,需要注意的是,尽管C4.5进行了这些改进,但它仍然只能解决分类问题,其本质仍然是一种分类树。

C4.5中信息值(以下简称IV值)是一个用于衡量数据集在划分时分支个数的指标,如果划分时分支越多,IV值就越高。具体IV值的计算公式如下:

上次介绍的ID3决策树的建模流程中,

以湿度的不同取值为划分规则时:


IV = − 2 5 ∗ l o g 2 2 5 -\frac{2}{5}*log_2\frac{2}{5} −52∗log252- 1 5 ∗ l o g 2 1 5 \frac{1}{5}*log_2\frac{1}{5} 51∗log251- 2 5 ∗ l o g 2 2 5 \frac{2}{5}*log_2\frac{2}{5} 52∗log252=1.52

C4.5采用增益比例(Gain Ratio,被称为获利比例或增益率),来指导具体的划分规则的挑选。GR的计算公式如下:
G a i n R a t i o = I n f o r m a t i o n G a i n I n f o r m a t i o n V a l u e Gain\ Ratio = \frac{Information\ Gain}{Information\ Value} Gain Ratio=Information ValueInformation Gain

上面的GR值为: g a i n I V \frac{gain}{IV} IVgain= 0.97 1.52 \frac{0.97}{1.52} 1.520.97=0.64

然后据此进一步计算其他各列展开后的GR值,并选择GR较大者进行数据集划分

C4.5的连续变量处理方法:和CART树一致。即在连续变量中寻找相邻的取值的中间点作为备选切分点,通过计算切分后的GR值来挑选最终数据集划分方式。

在sklearn的树模型介绍文档中,有一段关于sklearn的决策树不支持离散变量建模的说明,其意为不支持按照类似ID3或C4.5的方式直接将离散变量按列来进行展开,而是根据sklearn中集成的CART树自身的建模规则,使得sklearn中的决策树实际上在处理特征时都是按照C4.5中连续变量的处理方式在进行处理,并非指的是带入离散变量就无法建模。

相关推荐
木头左3 小时前
基于GARCH波动率聚类的指数期权蒙特卡洛定价模型
机器学习·数据挖掘·聚类
过期的秋刀鱼!3 小时前
机器学习-过拟合&欠拟合问题
人工智能·机器学习
知乎的哥廷根数学学派4 小时前
基于物理信息嵌入与多维度约束的深度学习地基承载力智能预测与可解释性评估算法(以模拟信号为例,Pytorch)
人工智能·pytorch·python·深度学习·算法·机器学习
格林威4 小时前
印刷电路板阻焊层缺失识别:防止短路风险的 7 个核心策略,附 OpenCV+Halcon 实战代码!
人工智能·数码相机·opencv·机器学习·计算机视觉·视觉检测·工业相机
liu****4 小时前
git工具
git·python·算法·机器学习·计算机基础
冰西瓜6005 小时前
从项目入手机器学习——(一)数据预处理(上)
人工智能·机器学习
sunfove5 小时前
空间几何的基石:直角、柱、球坐标系的原理与转换详解
人工智能·python·机器学习
知乎的哥廷根数学学派5 小时前
基于多尺度特征提取和注意力自适应动态路由胶囊网络的工业轴承故障诊断算法(Pytorch)
开发语言·网络·人工智能·pytorch·python·算法·机器学习
Yuer20255 小时前
低熵回答倾向:语言模型中的一种系统稳定态
人工智能·机器学习·语言模型·ai安全·edca os
郝学胜-神的一滴5 小时前
《机器学习》经典教材全景解读:周志华教授匠心之作的技术深探
数据结构·人工智能·python·程序人生·机器学习·sklearn