【力扣每日一题】力扣2865美丽塔I

题目来源

力扣2865美丽塔I

题目概述

给你一个长度为 n 下标从 0 开始的整数数组 maxHeights

你的任务是在坐标轴上建 n 座塔。第 i 座塔的下标为 i ,高度为 heights[i]

如果以下条件满足,我们称这些塔是 美丽 的:

1 <= heights[i] <= maxHeights[i] heights 是一个 山脉 数组。

解题思路

思路一:遍历一遍数组,假设每个位置为顶峰,分别计算该位置为顶峰时的山脉高度,并记录最大值; 思路二:使用两个数组(栈或者双端队列都行,最好是栈,方便编码)一个记录从左到右递增序列在某个位置的最大高度和,另一个记录从右到左递增序列在某个位置的最大高度和,同一个位置的最大高度和相加就是该位置为顶峰的结果。

代码实现

java实现

java 复制代码
public class Solution {
    public long maximumSumOfHeights(List<Integer> maxHeights) {
        // 长度
        int length = maxHeights.size();
        // 构造一座从左到右逐渐增高的山脉数组
        int[] rightMaxMountain = new int[length];
        rightMaxMountain[0] = maxHeights.get(0);
        // 表示记某个位置为顶峰,从左递增山脉的累计高度
        long[] rightMaxMountainHeightSum = new long[length];
        rightMaxMountainHeightSum[0] = rightMaxMountain[0];
        // 表示已构造山脉长度
        for (int i = 1; i < length; i++) {
            // 当前高度
            int current = maxHeights.get(i);
            long temp = rightMaxMountainHeightSum[i - 1];
            // 如果当前高度比已经构造的山高度低,已构造高的部分销毁
            int tempCount = i ;
            while (tempCount != 0 && rightMaxMountain[tempCount - 1] > current) {
                temp -= (rightMaxMountain[tempCount - 1] - current);
                rightMaxMountain[tempCount - 1] = current;
                tempCount--;
            }
            // 记录最大高度
            rightMaxMountainHeightSum[i] = temp + (rightMaxMountain[i] = current);
        }
        // 构造一座从右到左逐渐增高的山脉数组
        int[] leftMaxMountain = new int[length];
        leftMaxMountain[length - 1] = maxHeights.get(length - 1);
        // 表示记某个位置为顶峰,从右递增山脉的累计高度
        long[] leftMaxMountainHeightSum = new long[length];
        leftMaxMountainHeightSum[length - 1] = leftMaxMountain[length - 1];
        // 结果
        long result = rightMaxMountainHeightSum[length - 1] + leftMaxMountainHeightSum[length - 1] - maxHeights.get(length - 1);
        for (int i = length - 2; i >= 0; i--) {
            // 当前高度
            int current = maxHeights.get(i);
            long temp = leftMaxMountainHeightSum[i + 1];
            // 如果已构造山脉比当前高度高,销毁已构造高的部分
            int tempCount = i;
            while (tempCount != length - 1 && current < leftMaxMountain[tempCount + 1]){
                temp -= (leftMaxMountain[tempCount + 1] - current);
                leftMaxMountain[tempCount + 1] = current;
                tempCount++;
            }
            // 记录最大高度
            leftMaxMountainHeightSum[i] = temp + (leftMaxMountain[i] = current);
            result = Math.max(result, leftMaxMountainHeightSum[i] + rightMaxMountainHeightSum[i] - current);
        }
        return result;
    }
}

c++实现

cpp 复制代码
class Solution {
public:
    long long maximumSumOfHeights(vector<int>& maxHeights) {
        // 长度
        int length = maxHeights.size();
        // 构造一座从左到右逐渐增高的山脉数组
        int* rightMaxMountain = new int[length];
        rightMaxMountain[0] = maxHeights[0];
        // 表示记某个位置为顶峰,从左递增山脉的累计高度
        long long* rightMaxMountainHeightSum = new long long[length];
        rightMaxMountainHeightSum[0] = rightMaxMountain[0];
        // 表示已构造山脉长度
        for (int i = 1; i < length; i++) {
            // 当前高度
            int current = maxHeights[i];
            long temp = rightMaxMountainHeightSum[i - 1];
            // 如果当前高度比已经构造的山高度低,已构造高的部分销毁
            int tempCount = i;
            while (tempCount != 0 && rightMaxMountain[tempCount - 1] > current) {
                temp -= (rightMaxMountain[tempCount - 1] - current);
                rightMaxMountain[tempCount - 1] = current;
                tempCount--;
            }
            // 记录最大高度
            rightMaxMountainHeightSum[i] = temp + (rightMaxMountain[i] = current);
        }
        // 构造一座从右到左逐渐增高的山脉数组
        int* leftMaxMountain = new int[length];
        leftMaxMountain[length - 1] = maxHeights[length - 1];
        // 表示记某个位置为顶峰,从右递增山脉的累计高度
        long long* leftMaxMountainHeightSum = new long long[length];
        leftMaxMountainHeightSum[length - 1] = leftMaxMountain[length - 1];
        // 结果
        long long result = rightMaxMountainHeightSum[length - 1] + leftMaxMountainHeightSum[length - 1] - maxHeights[length - 1];
        for (int i = length - 2; i >= 0; i--) {
            // 当前高度
            int current = maxHeights[i];
            long temp = leftMaxMountainHeightSum[i + 1];
            // 如果已构造山脉比当前高度高,销毁已构造高的部分
            int tempCount = i;
            while (tempCount != length - 1 && current < leftMaxMountain[tempCount + 1]) {
                temp -= (leftMaxMountain[tempCount + 1] - current);
                leftMaxMountain[tempCount + 1] = current;
                tempCount++;
            }
            // 记录最大高度
            leftMaxMountainHeightSum[i] = temp + (leftMaxMountain[i] = current);
            long long newResult = leftMaxMountainHeightSum[i] + rightMaxMountainHeightSum[i] - current;
            result = result > newResult ? result : newResult;
        }
        return result;
    }
};

算法题记录

相关推荐
你撅嘴真丑1 小时前
第九章-数字三角形
算法
曹牧1 小时前
Spring Boot:如何测试Java Controller中的POST请求?
java·开发语言
在路上看风景1 小时前
19. 成员初始化列表和初始化对象
c++
uesowys1 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
zmzb01032 小时前
C++课后习题训练记录Day98
开发语言·c++
ValhallaCoder2 小时前
hot100-二叉树I
数据结构·python·算法·二叉树
董董灿是个攻城狮2 小时前
AI 视觉连载1:像素
算法
念风零壹2 小时前
C++ 内存避坑指南:如何用移动语义和智能指针解决“深拷贝”与“内存泄漏”
c++
爬山算法2 小时前
Hibernate(90)如何在故障注入测试中使用Hibernate?
java·后端·hibernate
智驱力人工智能2 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算