nlp文本主题提取算法总结

  1. BERTopic:

    • 简介: 基于预训练的语言模型BERT(Bidirectional Encoder Representations from Transformers)的主题模型,通过将文档嵌入到BERT空间中并进行聚类,实现主题提取。
    • 作者: 出自Cherubin等人的研究(2021)。
  2. BigARTM (Big Additive Regularization Topic Model):

    • 简介: BigARTM是一种多模态、多目标的主题模型,可以处理大规模文本集合,并且允许用户通过添加正则化项来引导主题模型学习特定的模式。
    • 作者: 出自"BigARTM: Open-Source Library for Regularized Multimodal and Multilingual Topic Modeling"(2015)。
  3. LDA2Vec:

    • 简介: LDA2Vec是一种将词向量和主题模型(Latent Dirichlet Allocation, LDA)结合的方法,通过将LDA中的主题表示嵌入到词嵌入空间中,实现更好的语义建模。
    • 作者: 出自"Dynamic Topic Models for Tracking Research Communities over Time"(2016)。
  4. ETM (Embedding Topic Model):

    • 简介: ETM是一种将主题嵌入到连续空间的模型,通过学习主题嵌入向量,将文档嵌入到主题空间中,以获得更丰富的语义表示。
    • 作者: 出自"A Neural Probabilistic Topic Model"(2019)。
  5. Biterm Topic Model (BTM):

    • 简介: BTM是一种基于二项分布的主题模型,通过对文档中的词对(biterms)进行建模,实现了在大规模文本集上高效的主题建模。
    • 作者: 出自"Modeling Bimodal Texts with the Biterm Topic Model"(2014)。
相关推荐
正经教主1 分钟前
【Trae+AI】和Trae学习搭建App_2.2.1:第4章·安卓APP调用Express后端实战1:前端调用后端
人工智能·学习·express
老蒋新思维2 分钟前
创客匠人峰会深度解析:知识变现的 “IP 资产化” 革命 —— 从 “运营流量” 到 “沉淀资产” 的长期增长逻辑
大数据·人工智能·网络协议·tcp/ip·创始人ip·创客匠人·知识变现
瀚岳-诸葛弩5 分钟前
对比tensorflow,从0开始学pytorch(三)--自定义层
人工智能·pytorch·tensorflow
测试人社区-小明7 分钟前
AI在金融软件测试中的实践
人工智能·测试工具·金融·pycharm·机器人·github·量子计算
小哲慢慢来8 分钟前
机器学习基本概念
人工智能·机器学习
张较瘦_10 分钟前
[论文阅读] AI + 软件工程 | 叙事的力量+专家智慧:解锁定性软件工程研究的过去、现在与未来
论文阅读·人工智能·软件工程
算法与编程之美12 分钟前
机器学习测试模型的性能评估与探索
人工智能·机器学习
小毅&Nora16 分钟前
【人工智能】【深度学习】 ⑩ 图神经网络(GNN)从入门到工业落地:消息传递、稀疏计算与推荐/风控实战
人工智能·深度学习·图神经网络gnn
zhangfeng113316 分钟前
大语言模型Ll M 这张图的核心信息是:随着模型规模变大,注意力(attention)层消耗的 FLOPs 占比越来越高,而 MLP 层占比反而下降。
人工智能
你那是什么调调18 分钟前
大语言模型如何“思考”与“创作”:以生成一篇杭州游记为例
人工智能·语言模型·chatgpt