YOLO 自己训练一个模型

一、准备数据集

我的版本是yolov8 8.11

这个目录结构很重要

cpp 复制代码
ultralytics-main  
              |  datasets
                         |coco
                              |train
                              |val

二、训练

编写yaml 文件

cpp 复制代码
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: "D:\\work\\pycharmworkplace\\ultralytics-main\\datasets\\coco"  # dataset root dir
train: "D:\\work\\pycharmworkplace\\ultralytics-main\\datasets\\coco\\train"
val: "D:\\work\\pycharmworkplace\\ultralytics-main\\datasets\\coco\\val"
#test:  # test images (optional)

# Classes (80 COCO classes)
names:
  0: fire

编写python 文件

cpp 复制代码
from ultralytics import YOLO

# Load a model
model = YOLO('.\\ultralytics-main\\yolov8n.pt')  # load a pretrained model (recommended for training)

# Train the model
results = model.train(data='.\\ultralytics-main\\datasets\\coco\\coco.yaml', epochs=10, imgsz=640)

# 检测命令
# yolo predict model=best.pt  source=ultralytics\assets\1_5.jpg

三、验证

自动训练

用python 文件启动

我只总共2600 张图,训练集是1600 张 ,跑10次大概一个多小时跑完

在dataset 的那个文件夹的coco 文件夹下生成了一个runs 的文件夹,里面就有模型和结果

结果看不懂,后面再说,现在找模型

训练的模型在这个目录下

测试:

测试命令

cpp 复制代码
yolo predict model=.datasets\\coco\\runs\\detect\\train2\\weights\\best.pt   source=ultralytics\assets
\1_54.jpg

结果

相关推荐
红色的山茶花4 小时前
YOLOv7-0.1部分代码阅读笔记-general.py
笔记·yolo
源代码•宸5 小时前
完美解决 no model scale passed. assuming scale=‘n‘ 的YOLO问题
经验分享·yolo
lanboAI7 小时前
基于yolov5的番茄成熟度检测系统,支持图像、视频和摄像实时检测【pytorch框架、python源码】
python·yolo·智能手机
goomind8 小时前
YOLOv11实战宠物狗分类
人工智能·yolo·机器学习·计算机视觉·分类·聚类
aabbcccddd0110 小时前
yolov8目标检测如何设置背景/无标签图像参与训练
人工智能·yolo·目标检测·ultralytics
啊文师兄11 小时前
使用 Pytorch 搭建视频车流量检测资源(基于YOLO)
人工智能·pytorch·yolo
牙牙要健康1 天前
【目标检测】【Ultralytics-YOLO系列】Windows11下YOLOV5人脸目标检测
人工智能·yolo·目标检测
Python图像识别-11 天前
基于yolov8、yolov5的番茄成熟度检测识别系统(含UI界面、训练好的模型、Python代码、数据集)
python·yolo·ui
双木的木1 天前
集智书童 | YOLOv8架构的改进:POLO 模型在多类目标检测中的突破 !
人工智能·python·深度学习·yolo·目标检测·机器学习·计算机视觉
985小水博一枚呀1 天前
【深度学习目标检测|YOLO算法4-4】YOLO家族进化史:从YOLOv1到YOLOv11的架构创新、性能优化与行业应用全解析——工业领域
网络·人工智能·深度学习·算法·yolo·目标检测·架构