MIT_线性代数笔记:线性代数常用概念及术语总结

目录

1.系数矩阵

线性代数的基本问题就是解 n 元一次方程组。例如:二元一次方程组
2 x − y = 0 − x + 2 y = 3 \begin{align*} & 2x - y= 0\\ & -x+2y = 3 \end{align*} 2x−y=0−x+2y=3

写成矩阵形式就是 : [ 2 − 1 − 1 2 ] [ x y ] = [ 0 3 ] \begin{bmatrix} 2&-1\\-1&2 \end{bmatrix}\begin{bmatrix} x\\y \end{bmatrix}=\begin{bmatrix} 0\\3 \end{bmatrix} [2−1−12][xy]=[03]

其中 A= [ 2 − 1 − 1 2 ] \begin{bmatrix} 2&-1\\-1&2 \end{bmatrix} [2−1−12]被称为系数矩阵(coefficient matrix)。 未知数向量通常记为 x= [ x y ] \begin{bmatrix} x\\y \end{bmatrix} [xy],而等号右侧的向量记为 b。线性方程组简记为 Ax=b。

2.高斯消元法

消元法是计算机软件求解线形方程组所用的最常见的方法。任何情况下,只要是矩阵 A 可逆,均可以通过消元法求得 Ax=b 的解。

高斯消元法(Gauss elimination)就是通过对方程组中的某两个方程进行适当的数乘和加(jian)和(fa),以达到将某一未知数系数变为零,从而削减未知数个数的目的。

3.置换矩阵 Permutation

置换矩阵,是一种特殊的方阵,其中每行和每列只有一个元素为1,其他元素都为0。它表示了对向量或矩阵的行或列的置换操作。

4.逆矩阵 Inverse

逆矩阵,也称为反矩阵,是指一个方阵A的逆矩阵 A − 1 A^{-1} A−1,它满足以下条件:
A 和 A − 1 A和A^{-1} A和A−1是方阵。
A 乘以 A − 1 等于单位矩阵 I : A A − 1 = A − 1 A = I A乘以A^-1等于单位矩阵I:A A^{-1} = A^{-1} A = I A乘以A−1等于单位矩阵I:AA−1=A−1A=I。
A − 1 唯一存在,当且仅当 A 是可逆矩阵 A^{-1}唯一存在,当且仅当A是可逆矩阵 A−1唯一存在,当且仅当A是可逆矩阵。

如果矩阵 A 是方阵,若存在逆矩阵 A − 1 A^{-1} A−1,使得 A − 1 A = I = A A − 1 A^{-1}A=I=A A^{-1} A−1A=I=AA−1(左逆矩阵等于右逆矩阵)。我们称矩阵 A 可逆(invertible)或者矩阵 A 非奇异(nonsingular)。 反之,如果 A 为奇异(singular),则其没有逆矩阵。它的行列式为 0。另一个等价的说法是,A 为奇异阵,则方程 Ax=0 存在非零解 x。

持续更进中!!!!

相关推荐
_落纸2 天前
三大基础无源电子元件——电阻(R)、电感(L)、电容(C)
笔记
Alice-YUE2 天前
【CSS学习笔记3】css特性
前端·css·笔记·html
2303_Alpha2 天前
SpringBoot
笔记·学习
淘小白_TXB21962 天前
头条号矩阵运营经验访谈记录
线性代数·矩阵
Hello_Embed2 天前
STM32HAL 快速入门(二十):UART 中断改进 —— 环形缓冲区解决数据丢失
笔记·stm32·单片机·学习·嵌入式软件
咸甜适中2 天前
rust语言 (1.88) 学习笔记:客户端和服务器端同在一个项目中
笔记·学习·rust
Grassto2 天前
RAG 从入门到放弃?丐版 demo 实战笔记(go+python)
笔记
Magnetic_h3 天前
【iOS】设计模式复习
笔记·学习·ios·设计模式·objective-c·cocoa
周周记笔记3 天前
学习笔记:第一个Python程序
笔记·学习
丑小鸭是白天鹅3 天前
Kotlin协程详细笔记之切线程和挂起函数
开发语言·笔记·kotlin