MIT_线性代数笔记:线性代数常用概念及术语总结

目录

1.系数矩阵

线性代数的基本问题就是解 n 元一次方程组。例如:二元一次方程组
2 x − y = 0 − x + 2 y = 3 \begin{align*} & 2x - y= 0\\ & -x+2y = 3 \end{align*} 2x−y=0−x+2y=3

写成矩阵形式就是 : [ 2 − 1 − 1 2 ] [ x y ] = [ 0 3 ] \begin{bmatrix} 2&-1\\-1&2 \end{bmatrix}\begin{bmatrix} x\\y \end{bmatrix}=\begin{bmatrix} 0\\3 \end{bmatrix} [2−1−12][xy]=[03]

其中 A= [ 2 − 1 − 1 2 ] \begin{bmatrix} 2&-1\\-1&2 \end{bmatrix} [2−1−12]被称为系数矩阵(coefficient matrix)。 未知数向量通常记为 x= [ x y ] \begin{bmatrix} x\\y \end{bmatrix} [xy],而等号右侧的向量记为 b。线性方程组简记为 Ax=b。

2.高斯消元法

消元法是计算机软件求解线形方程组所用的最常见的方法。任何情况下,只要是矩阵 A 可逆,均可以通过消元法求得 Ax=b 的解。

高斯消元法(Gauss elimination)就是通过对方程组中的某两个方程进行适当的数乘和加(jian)和(fa),以达到将某一未知数系数变为零,从而削减未知数个数的目的。

3.置换矩阵 Permutation

置换矩阵,是一种特殊的方阵,其中每行和每列只有一个元素为1,其他元素都为0。它表示了对向量或矩阵的行或列的置换操作。

4.逆矩阵 Inverse

逆矩阵,也称为反矩阵,是指一个方阵A的逆矩阵 A − 1 A^{-1} A−1,它满足以下条件:
A 和 A − 1 A和A^{-1} A和A−1是方阵。
A 乘以 A − 1 等于单位矩阵 I : A A − 1 = A − 1 A = I A乘以A^-1等于单位矩阵I:A A^{-1} = A^{-1} A = I A乘以A−1等于单位矩阵I:AA−1=A−1A=I。
A − 1 唯一存在,当且仅当 A 是可逆矩阵 A^{-1}唯一存在,当且仅当A是可逆矩阵 A−1唯一存在,当且仅当A是可逆矩阵。

如果矩阵 A 是方阵,若存在逆矩阵 A − 1 A^{-1} A−1,使得 A − 1 A = I = A A − 1 A^{-1}A=I=A A^{-1} A−1A=I=AA−1(左逆矩阵等于右逆矩阵)。我们称矩阵 A 可逆(invertible)或者矩阵 A 非奇异(nonsingular)。 反之,如果 A 为奇异(singular),则其没有逆矩阵。它的行列式为 0。另一个等价的说法是,A 为奇异阵,则方程 Ax=0 存在非零解 x。

持续更进中!!!!

相关推荐
whale fall1 小时前
【剑雅14】笔记
笔记
ChoSeitaku1 小时前
线代强化NO20|矩阵的相似与相似对角化|综合运用
线性代数·机器学习·矩阵
西西弗Sisyphus1 小时前
矩阵的左乘和右乘有什么区别
线性代数·矩阵
西西弗Sisyphus2 小时前
满秩分解是怎么把矩阵分解成了两个满秩的矩阵
线性代数·矩阵·初等矩阵·满秩分解
AI科技星2 小时前
为什么宇宙无限大?
开发语言·数据结构·经验分享·线性代数·算法
星空的资源小屋2 小时前
跨平台下载神器ArrowDL,一网打尽所有资源
javascript·笔记·django
Xudde.3 小时前
Quick2靶机渗透
笔记·学习·安全·web安全·php
AA陈超3 小时前
Git常用命令大全及使用指南
笔记·git·学习
愚戏师4 小时前
Python3 Socket 网络编程复习笔记
网络·笔记
降临-max5 小时前
JavaSE---网络编程
java·开发语言·网络·笔记·学习