谷歌推出 AutoRT 机器人代理大规模编排的具体基础模型,远程操作和收集 77,000 个机器人事件

演示 AutoRT 向多个建筑物中的20 多个机器人提出指令 ,并通过远程操作和自主机器人策略收集77,000个真实的机器人事件。实验表明,AutoRT 收集的此类"野外"数据明显更加多样化,并且 AutoRT 使用 LLMs 允许遵循能够符合人类偏好的数据收集机器人的指令。

论文网址: https://huggingface.co/papers/2401.12963

更多消息:AI人工智能行业动态,aigc应用领域资讯

结合了语言、视觉和最近的行动的基础模型彻底改变了利用互联网规模数据来推理有用任务的能力。然而,训练具体基础模型的关键挑战之一是缺乏基于物理世界的数据。在本文中,我们提出了 AutoRT,这是一个利用现有基础模型在完全看不见的场景中以最少的人工监督来扩大操作机器人部署的系统。

AutoRT 利用视觉语言模型 (VLM) 进行场景理解和基础,并进一步使用大型语言模型 (LLMs) 提出由一组机器人执行的多样化且新颖的指令。通过利用基础模型的知识来指导数据收集,使 AutoRT 能够有效地推理自主权衡和安全性,同时显着扩大机器人学习的数据收集范围。

视频演示了 AutoRT 向多个建筑物中的20多个机器人提出指令,并通过远程操作和自主机器人策略收集77,000个真实的机器人事件。通过实验表明,AutoRT 收集的此类"野外"数据明显更加多样化,并且 AutoRT 使用 LLMs 允许遵循能够符合人类偏好的数据收集机器人的指令。

AutoRT的功能主要是能够收集到大量真实的机器人事件,这些事件可以用于训练和改进机器人的自主权衡和安全性。

应用于各种需要自主操作机器人的场景,例如:

  1. **物流和运输:**机器人可以在仓库中自动搬运物品,或在运输途中自动规划最佳路线。
  2. **制造业:**在制造业中,机器人可以自动完成生产线上的任务,提高生产效率和产品质量。
  3. **医疗服务:**在医疗领域,机器人可以协助医生进行手术操作,或为病人提供日常护理服务。
  4. **灾害救援:**在灾难发生时,机器人可以进入危险区域进行搜索和救援任务,帮助救援人员减少风险。

总之,AutoRT模型的应用场景非常广泛,可以帮助机器人更好地适应各种环境和任务需求,提高机器人的自主性和智能性。

相关推荐
Hcoco_me14 分钟前
大模型面试题63:介绍一下RLHF
人工智能·深度学习·机器学习·chatgpt·机器人
hkNaruto24 分钟前
【AI】AI学习笔记:LangGraph入门 三大典型应用场景与代码示例及MCP、A2A与LangGraph核心对比
人工智能·笔记·学习
向量引擎小橙25 分钟前
“2026数据枯竭”警报拉响:合成数据如何成为驱动AI进化的“新石油”?
大数据·人工智能·深度学习·集成学习
努力犯错33 分钟前
Qwen Image Layered:革命性的AI图像生成与图层分解技术
人工智能·深度学习·计算机视觉
杜子不疼.36 分钟前
【AI】基于GLM-4_7与数字人SDK的政务大厅智能指引系统实践
人工智能·microsoft·政务
core5121 小时前
SGD 算法详解:蒙眼下山的寻宝者
人工智能·算法·矩阵分解·sgd·目标函数
阿湯哥1 小时前
Spring AI Alibaba 实现 Workflow 全指南
java·人工智能·spring
Tezign_space1 小时前
Agent Skills 详解:5大核心能力架构与AI Agent落地实践
人工智能·架构·生成式ai·ai agent·上下文工程·skills·agent skills
m0_466525291 小时前
东软添翼AI 2.0获评医疗健康标杆AI Agent TOP10
大数据·人工智能
用户5191495848451 小时前
Linux PAM环境变量注入漏洞利用工具解析
人工智能·aigc