基于LLaMA-Factory的微调记录

文章目录

LLaMA-Factory是一个非常好用的无代码微调框架,不管是在模型、微调方式还是参数设置上都提供了非常完备的支持,下面是对微调全过程的一个记录。

数据模型准备

微调时一般需要准备三个数据集:一个是自我认知数据集(让大模型知道自己是谁),一个是特定任务数据集(微调时需要完成的目标任务),一个是通用任务数据集(保持大模型的通用能力,防止变傻)。前两个一般要自己定义,最后一个用现成的就行。

自定义数据集可采用alpaca和sharegpt格式,这里采用的是alpaca格式:

py 复制代码
[
  {
    "instruction": "用户指令(必填)",
    "input": "用户输入(选填)",
    "output": "模型回答(必填)",
    "system": "系统提示词(选填)",
    "history": [
      ["第一轮指令(选填)", "第一轮回答(选填)"],
      ["第二轮指令(选填)", "第二轮回答(选填)"]
    ]
  }
]

由于不需要考虑多轮对话,所以history可以不要,这里采用了两种数据集的组织方式,一种是只有instruction和output,把问题作为instruction,另外一种是把问题作为input,把回答问题这一要求作为instruction。这两种格式分别记为format2format3

在生成完自定义的问答json文件之后,根据以下代码计算其sha1值:

py 复制代码
import hashlib

def calculate_sha1(file_path):
    sha1 = hashlib.sha1()
    try:
        with open(file_path, 'rb') as file:
            while True:
                data = file.read(8192)  # Read in chunks to handle large files
                if not data:
                    break
                sha1.update(data)
        return sha1.hexdigest()
    except FileNotFoundError:
        return "File not found."

# 使用示例
file_path = './data/self_cognition_modified.json'  # 替换为您的文件路径
sha1_hash = calculate_sha1(file_path)
print("SHA-1 Hash:", sha1_hash)

将json文件放入data文件夹下,同步修改dataset_info.json文件,输入新增的文件名称和对应的sha1值。

测试的大模型可以使用这些,注意要下载最新版,老版的模型结构不太匹配。

基于网页的简单微调

在后台执行CUDA_VISIBLE_DEVICES=0 python src/train_web.py命令,成功开启网页,设置如下,手动输入模型路径。

训练完成之后的界面,可以查看损失函数

基于网页的简单评测

  • 原始模型评测

  • 微调后模型评测
    首先加载lora


    可以看到,微调之后的模型在各个指标上有了显著提升

基于网页的简单聊天

切换到Chat并点击加载模型后,可以进入聊天

相关推荐
Allenlzcoder10 小时前
2026年AI工程师完全指南
大模型
java1234_小锋11 小时前
【AI大模型舆情分析】微博舆情分析可视化系统(pytorch2+基于BERT大模型训练微调+flask+pandas+echarts) 实战(上)
人工智能·flask·大模型·bert
CoderJia程序员甲14 小时前
GitHub 热榜项目 - 日榜(2026-02-01)
人工智能·ai·大模型·github·ai教程
壮Sir不壮1 天前
2026年奇点:Clawdbot引爆个人AI代理
人工智能·ai·大模型·claude·clawdbot·moltbot·openclaw
玉梅小洋1 天前
Claude Code 从入门到精通(七):Sub Agent 与 Skill 终极PK
人工智能·ai·大模型·ai编程·claude·ai工具
king of code porter1 天前
百宝箱企业版搭建智能体应用-平台概述
人工智能·大模型·智能体
梁辰兴1 天前
百亿美元赌注变数,AI军备竞赛迎来转折点?
人工智能·ai·大模型·openai·英伟达·梁辰兴·ai军备竞赛
king of code porter1 天前
百宝箱企业版搭建智能体应用-创建应用
人工智能·大模型·智能体
硅基捕手维克托1 天前
无向量 RAG 有多强?PageIndex 凭树形索引革新传统语义检索
大模型·rag·上下文·rag技术·claude code·pageindex
AndrewHZ1 天前
【AI黑话日日新】什么是AI智能体?
人工智能·算法·语言模型·大模型·llm·ai智能体