Hive 行列转换

行列转换
列转行

使用 lateral view + explode(array|map)lateral view + inline(array_struct) 可以将列转换为行。

  • 单列转多行,降维(单列数组或键值对)

示例1:explode(array(...))

sql 复制代码
select ..., A
from T
lateral view explode(ARRAY_FIELD) as A;
sql 复制代码
select explode(`array`(88.2,98.3,67.1)) AS (price);

示例2:explode(map(...))

sql 复制代码
select ..., K, V
from T
lateral view explode(MAP_FIELD) as K, V;
sql 复制代码
select explode(`map`("java",56,"mysql",88,"javascript",66)) AS (subject, score);

示例3:inline(array_struct)

sql 复制代码
select ..., 
from T
lateral view inline(STRUCT_ARRAY_FIELD)V as F1,...,FN;
sql 复制代码
with tmp as (
select array(
	named_struct('name','henry','age',22,'is_member','true'),
	named_struct('name','pola','age',20,'is_member','true'),
	named_struct('name','ariel','age',19,'is_member','true')
   ) AS array_struct
)
select name,age,is_member
from tmp
lateral view inline(array_struct)V as name,age,is_member;

lateral view inline(array_struct)将结构体数组的每个元素都转化为一行,每一行都包含结构体字段的值.

前:

后:

  • 多列转多行
sql 复制代码
select ..., A
from T
lateral view explode(array|map(F1,...,FN))V as A;

示例:

sql 复制代码
SELECT name, class, Scores.subject, Scores.score
FROM Students
LATERAL VIEW EXPLODE(ARRAY(
	named_struct('subject','math','score',math_score),
	named_struct('subject','science','score',science_score)
	)
) V AS Scores;

前:

后:

行转列
  • 多行转多列
    条件聚合,通常用于将多行数据中满足条件的某个值聚合到单个行中。
sql 复制代码
select
		F1,...,
		sum(if(C1,0,V1)) as A1,
		sum(if(C2,0,V2)) as A2,
		sum(if(C3,0,V3)) as A3
	from TABLE_NAME
	group by F1,...
	
	drop table if exists lateral_view_stack_test1w;
	create table lateral_view_stack_test1w as
	select year,
		   sum(if(month(order_time)=1,order_amount,0)) as sum_jan,
		   sum(if(month(order_time)=2,order_amount,0)) as sum_feb,
		   sum(if(month(order_time)=3,order_amount,0)) as sum_mar,
		   sum(if(month(order_time)=4,order_amount,0)) as sum_apr,
		   sum(if(month(order_time)=5,order_amount,0)) as sum_may,
		   sum(if(month(order_time)=6,order_amount,0)) as sum_jun,
		   sum(if(month(order_time)=7,order_amount,0)) as sum_jul,
		   sum(if(month(order_time)=8,order_amount,0)) as sum_aug,
		   sum(if(month(order_time)=9,order_amount,0)) as sum_sep,
		   sum(if(month(order_time)=10,order_amount,0)) as sum_oct,
		   sum(if(month(order_time)=11,order_amount,0)) as sum_nov,
		   sum(if(month(order_time)=12,order_amount,0)) as sum_dec
	from hive_internal_par_regex_test1w
	where year>=2014
	group by year;
相关推荐
workflower1 小时前
量子比特实现方式
数据仓库·服务发现·需求分析·量子计算·软件需求
yt9483210 小时前
如何在IDE中通过Spark操作Hive
ide·hive·spark
青春之我_XP10 小时前
【基于阿里云搭建数据仓库(离线)】Data Studio创建资源与函数
大数据·数据仓库·sql·dataworks·maxcompute·data studio
Leo.yuan18 小时前
实时数据仓库是什么?数据仓库设计怎么做?
大数据·数据库·数据仓库·数据分析·spark
viperrrrrrrrrr72 天前
大数据学习(129)-Hive数据分析
大数据·hive·学习
伍六星2 天前
图片上传问题解决方案与实践
大数据·hive·hadoop
涤生大数据2 天前
Apache Doris 在数据仓库中的作用与应用实践
数据仓库·apache·doris
杨DaB2 天前
【JavaWeb】Maven、Servlet、cookie/session
hive·servlet·maven
IT成长日记3 天前
【Doris基础】Apache Doris vs 传统数据仓库:架构与性能的全面对比
数据仓库·架构·doris·doris vs 传统数据仓库
xx155802862xx3 天前
hive聚合函数多行合并
数据仓库·hive·hadoop