Docker 镜像优化工具,轻松完成构件瘦身 | 开源日报 No.158

wagoodman/dive

Stars: 41.7k License: MIT

dive 是一个用于探索 Docker 镜像、层内容,并发现如何缩小 Docker/OCI 镜像大小的工具。

  • 显示按层分解的 Docker 镜像内容
  • 指示每个层中发生了什么变化
  • 估算"镜像效率"
  • 快速构建/分析周期
  • CI 集成
  • 支持多种镜像来源和容器引擎安装方法,包括 Ubuntu/Debian、RHEL/Centos、Arch Linux 等,以及 Mac 和 Windows 平台。同时也支持通过 Go 工具进行安装。

ethen8181/machine-learning

Stars: 3.0k License: MIT

machine-learning 是一个持续更新的开源项目,主要用 Python3 编写机器学习教程。 该项目解决了如何以 Jupyter Notebook 格式介绍机器学习内容的问题。

  • 主要功能包括深度学习、模型部署、运筹研究、强化学习等多个方向的教程。
  • 核心优势在于其内容旨在实现数学符号与 Python 科研栈(包括 numpy, numba, scipy, pandas, matplotlib 等)之间良好平衡,并使用诸如 scikit-learn,fasttext,huggingface 等开源库。
  • 重点特性有对各种算法和技术进行详尽讲解,并提供大量实例代码。例如:深度神经网络(CNN)、循环神经网络(RNN)、长短期记忆网络 (LSTM) 以及 Word2vec 等。

facebookresearch/habitat-sim

Stars: 2.2k License: MIT

habitat-sim 是一个灵活、高性能的三维模拟器,用于体验式人工智能研究。 该项目的主要功能、关键特性和核心优势包括:

  • 支持室内/室外空间的 3D 扫描
  • 支持 CAD 模型和分段刚体对象
  • 可配置传感器(RGB-D 相机、自我运动感知)
  • 通过 URDF 描述机器人
  • 刚体力学(通过 Bullet 实现)

该项目旨在提供快速模拟速度,并通常与 Habitat-Lab 一起使用,后者是一个端到端实验库,用于进行体验式人工智能任务。

QwenLM/Qwen

Stars: 8.2k License: Apache-2.0

Qwen 是由阿里云提出的聊天和预训练大型语言模型的官方存储库。 该项目主要功能、关键特性、核心优势包括:

  • 提供了强大的基础语言模型,覆盖多个领域和语言(重点是中文和英文),在基准数据集上表现出竞争力
  • 提供了与人类偏好对齐的聊天模型,能够进行对话、创作内容、提取信息等,并且能够使用工具或扮演代理人角色
  • 支持不同规模的预训练模型,并提供量化版本以及推理性能统计等详细信息
  • 提供了快速入门指南、微调教程以及部署说明等相关资源
  • 在一系列基准数据集上,Qwen 模型在自然语言理解、数学问题求解等任务上表现优异,超过了类似规模基线模型。

openobserve/openobserve

Stars: 7.8k License: AGPL-3.0

osguider.oss-cn-guangzhou.aliyuncs.com/subject/ceb...

openobserve 是一个云原生的可观测性平台,专门用于日志、指标、跟踪、分析和实时用户监控(RUM),设计用于 PB 级别的规模。 该项目主要功能、关键特性和核心优势包括:

  • 提供全面支持各种数据类型的日志、指标和跟踪
  • 完全兼容 OTLP 以支持开放遥测
  • 包括性能追踪、错误记录和会话重播等真实用户监控功能
  • 具备超过 14 种不同图表类型进行综合数据可视化的警报与仪表板功能
  • 支持高级摄取与查询函数,如丰富化处理,剔除敏感信息,并提供 SQL 和 PromQL 查询支持等

此外还有易安装运行单一二进制文件;多样存储选项;高可用集群;动态架构适应数据结构变更;内置认证机制及多语言界面支持。

OpenDriveLab/UniAD

Stars: 1.9k License: Apache-2.0

Planning-oriented Autonomous Driving 是一个统一的自动驾驶算法框架,遵循规划导向的理念。与独立模块化设计和多任务学习不同,该项目将感知、预测和规划等一系列任务按层次进行组织。

以下是该项目的核心优势:

  • 规划导向哲学:UniAD 遵循了以规划为中心的思想,在自动驾驶领域提供了一个统一且高效的解决方案。
  • 最先进性能:UniAD 在所有任务上都取得了最先进水平 (运动:0.71m minADE,占用率:63.4% IoU,规划:0.31% avg.Col)。

关键特性包括:

  • 统一框架:通过整合各个子系统,并采用分级方式处理感知、预测和规划等多项任务。
  • SOTA 性能表现:在每个阶段内部实现业界领先水平,并尤其擅长于预测和路径规则两大主要功能。
相关推荐
用户3157476081351 小时前
成为程序员的必经之路” Git “,你学会了吗?
面试·github·全栈
杨哥带你写代码2 小时前
网上商城系统:Spring Boot框架的实现
java·spring boot·后端
camellias_2 小时前
SpringBoot(二十一)SpringBoot自定义CURL请求类
java·spring boot·后端
墨染8662 小时前
HP G10服务器ESXI6.7告警提示ramdisk tmp已满
github
背水2 小时前
初识Spring
java·后端·spring
晴天飛 雪3 小时前
Spring Boot MySQL 分库分表
spring boot·后端·mysql
weixin_537590453 小时前
《Spring boot从入门到实战》第七章习题答案
数据库·spring boot·后端
ggaofeng3 小时前
通过命令学习k8s
云原生·容器·kubernetes
death bell3 小时前
Docker基础概念
运维·docker·容器