sklearn.preprocessing中的标准化StandardScaler与scale的区别

StandardScaler与scale

1、标准化概述

标准化主要用于对样本数据在不同特征维度进行伸缩变换,目的是使得不同度量之间的特征具有可比性,同时不改变原始数据的分布

一些机器学习算法对输入数据的规模和量纲非常敏感,如果输入数据的特征之间存在数量级差异,可能会影响算法的准确性和性能

标准化处理的好处是我们在进行特征提取时,可以忽略不同特征之间由于噪声所导致的度量差异,而保留样本在各个维度上的信息分布,提高算法的准确性和性能,增加数据的可解释性

标准化的过程如下:

  • 计算数据列的算数平均值(mean)
  • 计算数据列的标准差/方差(std)
  • 对每个数据列分别进行转化:(X-mean)/std

sklearn.preprocessing提供了两种直接对给定数据进行标准化的方式:scale()函数和StandardScaler类,它们之间有什么区别呢?

2、两种标准化的区别

1)scale()函数

python 复制代码
import numpy as np
from sklearn.preprocessing import scale, StandardScaler

# A、scale(X, axis)函数:axis:用来计算均值和标准差的轴,默认0,对每个特征进行标准化(列),1为对每个样本进行标准化(行)
# 样本数据
X = np.array([[1, -1, 2], [2, 1, 0]])
# 直接标准化处理
X_scaled = scale(X)
print(X_scaled)
'''
[[-1. -1.  1.]
 [ 1.  1. -1.]]
'''
# 处理后数据的均值和方差
print(X_scaled.mean(axis=0))    # [0. 0. 0.]
print(X_scaled.std(axis=0))     # [1. 1. 1.]

2)StandardScaler类

python 复制代码
# B、StandardScaler类
ss = StandardScaler()
# 标准化处理,如果在训练集上进行标准化,同时可以使用保存在训练集中的参数(均值、方差)对测试集数据进行转化
X_scaled = ss.fit_transform(X)
print(X_scaled)
'''
[[-1. -1.  1.]
 [ 1.  1. -1.]]
'''
# 处理后数据的均值和方差
print(X_scaled.mean())    # 0.0
print(X_scaled.std())     # 1.0
# 使用训练集标准化后的均值和方差对测试集数据进行转换
print(ss.transform([[-1, 2, 0]]))
'''
[[-5.  2. -1.]]
'''

StandardScaler类与scale函数标准化的区别总结如下:

  • scale()函数:不能将原数据集(训练集)的均值和方差应用到新的数据集(测试集),如果使用全部样本,标准化计算的结果是训练集和测试集共同的期望和方差
  • StandardScaler类:可以将原数据集(训练集)的均值和方差应用到新的数据集(测试集),即假设训练集的期望和测试集的期望是一样的,测试集的标准化是用的训练集的期望和方差

在机器学习中,我们通常是从整体中以抽样的方式抽出训练集,这意味着我们默认这部分训练集可以代替整体,也就是训练集的期望就是整体的期望,测试集标准化时,它的期望采用的正是训练集的期望,所以StandardScaler类才是我们经常用的方式

更多关于StandardScaler类的使用见文章:传送门

相关推荐
阿坡RPA1 小时前
手搓MCP客户端&服务端:从零到实战极速了解MCP是什么?
人工智能·aigc
用户27784491049931 小时前
借助DeepSeek智能生成测试用例:从提示词到Excel表格的全流程实践
人工智能·python
机器之心2 小时前
刚刚,DeepSeek公布推理时Scaling新论文,R2要来了?
人工智能
算AI4 小时前
人工智能+牙科:临床应用中的几个问题
人工智能·算法
JavaEdge在掘金4 小时前
ssl.SSLCertVerificationError报错解决方案
python
我不会编程5554 小时前
Python Cookbook-5.1 对字典排序
开发语言·数据结构·python
凯子坚持 c4 小时前
基于飞桨框架3.0本地DeepSeek-R1蒸馏版部署实战
人工智能·paddlepaddle
老歌老听老掉牙4 小时前
平面旋转与交线投影夹角计算
python·线性代数·平面·sympy
满怀10155 小时前
Python入门(7):模块
python
无名之逆5 小时前
Rust 开发提效神器:lombok-macros 宏库
服务器·开发语言·前端·数据库·后端·python·rust