sklearn.preprocessing中的标准化StandardScaler与scale的区别

StandardScaler与scale

1、标准化概述

标准化主要用于对样本数据在不同特征维度进行伸缩变换,目的是使得不同度量之间的特征具有可比性,同时不改变原始数据的分布

一些机器学习算法对输入数据的规模和量纲非常敏感,如果输入数据的特征之间存在数量级差异,可能会影响算法的准确性和性能

标准化处理的好处是我们在进行特征提取时,可以忽略不同特征之间由于噪声所导致的度量差异,而保留样本在各个维度上的信息分布,提高算法的准确性和性能,增加数据的可解释性

标准化的过程如下:

  • 计算数据列的算数平均值(mean)
  • 计算数据列的标准差/方差(std)
  • 对每个数据列分别进行转化:(X-mean)/std

sklearn.preprocessing提供了两种直接对给定数据进行标准化的方式:scale()函数和StandardScaler类,它们之间有什么区别呢?

2、两种标准化的区别

1)scale()函数

python 复制代码
import numpy as np
from sklearn.preprocessing import scale, StandardScaler

# A、scale(X, axis)函数:axis:用来计算均值和标准差的轴,默认0,对每个特征进行标准化(列),1为对每个样本进行标准化(行)
# 样本数据
X = np.array([[1, -1, 2], [2, 1, 0]])
# 直接标准化处理
X_scaled = scale(X)
print(X_scaled)
'''
[[-1. -1.  1.]
 [ 1.  1. -1.]]
'''
# 处理后数据的均值和方差
print(X_scaled.mean(axis=0))    # [0. 0. 0.]
print(X_scaled.std(axis=0))     # [1. 1. 1.]

2)StandardScaler类

python 复制代码
# B、StandardScaler类
ss = StandardScaler()
# 标准化处理,如果在训练集上进行标准化,同时可以使用保存在训练集中的参数(均值、方差)对测试集数据进行转化
X_scaled = ss.fit_transform(X)
print(X_scaled)
'''
[[-1. -1.  1.]
 [ 1.  1. -1.]]
'''
# 处理后数据的均值和方差
print(X_scaled.mean())    # 0.0
print(X_scaled.std())     # 1.0
# 使用训练集标准化后的均值和方差对测试集数据进行转换
print(ss.transform([[-1, 2, 0]]))
'''
[[-5.  2. -1.]]
'''

StandardScaler类与scale函数标准化的区别总结如下:

  • scale()函数:不能将原数据集(训练集)的均值和方差应用到新的数据集(测试集),如果使用全部样本,标准化计算的结果是训练集和测试集共同的期望和方差
  • StandardScaler类:可以将原数据集(训练集)的均值和方差应用到新的数据集(测试集),即假设训练集的期望和测试集的期望是一样的,测试集的标准化是用的训练集的期望和方差

在机器学习中,我们通常是从整体中以抽样的方式抽出训练集,这意味着我们默认这部分训练集可以代替整体,也就是训练集的期望就是整体的期望,测试集标准化时,它的期望采用的正是训练集的期望,所以StandardScaler类才是我们经常用的方式

更多关于StandardScaler类的使用见文章:传送门

相关推荐
新智元9 分钟前
仅 4 人 28 天!OpenAI 首曝 Sora 内幕:85% 代码竟由 AI 完成
人工智能·openai
受之以蒙20 分钟前
Rust 与 dora-rs:吃透核心概念,手把手打造跨语言的机器人实时数据流应用
人工智能·笔记·rust
前端开发工程师请求出战22 分钟前
把大模型装进口袋:HuggingFace如何让AI民主化成为现实
人工智能
亚马逊云开发者25 分钟前
Amazon Connect结合Strands框架及Bedrock Agent Core的智能客服机器人解决方案(实践篇)
人工智能
谷歌开发者30 分钟前
Web 开发指向标|AI 辅助功能在性能面板中的使用与功能
前端·人工智能
aningxiaoxixi30 分钟前
TTS 之 PYTHON库 pyttsx3
开发语言·python·语音识别
深蓝海拓32 分钟前
PySide6从0开始学习的笔记(三) 布局管理器与尺寸策略
笔记·python·qt·学习·pyqt
itwangyang5201 小时前
AIDD-人工智能药物设计-StructGuy:破解蛋白变异预测的数据泄漏难题
人工智能
rongcj1 小时前
智能眼镜成新经济现象,它是佩戴的AI,还是AI的容器?
人工智能
XiaoMu_0011 小时前
DeepAnalyze:首个开源自动数据科学 Agentic LLM
人工智能