PaddleNLP的简单使用

1 介绍

PaddleNLP是一个基于PaddlePaddle深度学习平台的自然语言处理(NLP)工具库。

它提供了一系列用于文本处理、文本分类、情感分析、文本生成等任务的预训练模型、模型组件和工具函数。

PaddleNLP有统一的应用范式:通过 paddlenlp.Taskflow调用,简捷易用。

2 安装

2.1 安装依赖包

python 复制代码
pip install python==3.8.10 -i https://mirror.baidu.com/pypi/simple
pip install paddlepaddle==2.4.2 -i https://mirror.baidu.com/pypi/simple
pip install paddlenlp==2.5.2 -i https://mirror.baidu.com/pypi/simple


pip install opencv-python -i https://mirror.baidu.com/pypi/simple
pip install paddleocr -i https://mirror.baidu.com/pypi/simple

pip install --upgrade opencv-python
pip install --upgrade paddlenlp
pip install --upgrade paddleocr

2.2 验证是否安装成功

执行python命令,未报错则代表安装成功

python 复制代码
import paddle
paddle.utils.run_check()

2.3 问题排查

(1)执行时如果报错 ModuleNotFoundError: No module named 'paddle.nn.layer.layers',则再次执行以下安装命令

python 复制代码
pip install paddlenlp==2.5.2 -i https://mirror.baidu.com/pypi/simple

3 使用

3.1 中文分词

python 复制代码
from paddlenlp import Taskflow

# 默认模式-实体粒度分词,在精度和速度上的权衡,基于百度LAC
seg = Taskflow("word_segmentation")
print(seg("PaddleNLP是一个基于PaddlePaddle深度学习平台的自然语言处理工具库"))


# 指定模式-粗粒度分词,速度更快,基于jieba
seg = Taskflow("word_segmentation", mode="fast")
print(seg("PaddleNLP是一个基于PaddlePaddle深度学习平台的自然语言处理工具库"))


# 精确模式-最准:实体粒度切分准确度最高,基于百度解语
seg_accurate = Taskflow("word_segmentation", mode="accurate")
print(seg_accurate("PaddleNLP是一个基于PaddlePaddle深度学习平台的自然语言处理工具库"))

# 批量处理------平均速度更快
print(seg(["PaddleNLP是一个基于PaddlePaddle深度学习平台的自然语言处理工具库",
           "它提供了一系列用于文本处理、文本分类等任务的预训练模型、模型组件和工具函数"]))

4 参考文献

(1) 数据处理轻松搞定:如何利用PaddleNLP高效处理大规模文本数据

(2)ModuleNotFoundError

相关推荐
weixin_307779135 小时前
自然语言生成(NLG)算法模型评估方案的硬件配置、系统架构设计、软件技术栈、实现流程和关键代码
人工智能·算法·自然语言处理·系统架构
纠结哥_Shrek15 小时前
自然语言处理-词嵌入 (Word Embeddings)
人工智能·自然语言处理
X.AI66616 小时前
【大模型LLM面试合集】大语言模型架构_MHA_MQA_GQA
人工智能·语言模型·自然语言处理
沐雪架构师1 天前
AI大模型开发原理篇-4:神经概率语言模型NPLM
人工智能·语言模型·自然语言处理
道友老李1 天前
【自然语言处理(NLP)】多头注意力(Multi - Head Attention)原理及代码实现
人工智能·自然语言处理
沐雪架构师2 天前
AI大模型开发原理篇-2:语言模型雏形之词袋模型
人工智能·语言模型·自然语言处理
struggle20252 天前
一个开源 GenBI AI 本地代理(确保本地数据安全),使数据驱动型团队能够与其数据进行互动,生成文本到 SQL、图表、电子表格、报告和 BI
人工智能·深度学习·目标检测·语言模型·自然语言处理·数据挖掘·集成学习
静静AI学堂2 天前
DeepSeek-R1:通过强化学习激励大型语言模型(LLMs)的推理能力
人工智能·语言模型·自然语言处理
爱研究的小牛3 天前
Deepseek技术浅析(二):大语言模型
人工智能·机器学习·语言模型·自然语言处理·aigc
程序喵;3 天前
Retrieval-Augmented Generation for Large Language Models: A Survey——(1)Overview
论文阅读·人工智能·语言模型·自然语言处理·rag