Hadoop3.x基础(1)

来源:B站尚硅谷

这里写目录标题

大数据概论

大数据概念

大数据(Big Data):指无法在一定时间范围内 用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产

大数据主要解决海量数据的采集、存储和分析计算问题

按顺序给出数据存储单位:bit、Byte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB。

1Byte = 8bit 1K = 1024Byte 1MB = 1024K

1G = 1024M 1T = 1024G 1P = 1024T

大数据特点(4V)

  • 1. Volume(大量)
    截至目前,人类生产的所有印刷材料的数据量是200PB,而历史上全人类总共说过的话的数据量大约是5EB。当前,典型个人计算机硬盘的容量为TB量级,而一些大企业的数据量已经接近EB量级。
  • 2. Velocity(高速)
    这是大数据区分于传统数据挖掘的最显著特征。根据IDC的"数字宇宙"的报告,预计到2025年,全球数据使用量将达到163ZB。在如此海量的数据面前,处理数据的效率就是企业的生命。
  • 3. Variety(多样)
    这种类型的多样性也让数据被分为结构化数据和非结构化数据。相对于以往便于存储的以数据库/文本为主的结构化数据,非结构化数据越来越多,包括网络日志、音频、视频、图片、地理位置信息等,这些多类型的数据对数据的处理能力提出了更高要求。
  • 4. Value(低价值密度)
    价值密度的高低与数据总量的大小成反比。
    比如,在一天监控视频中,我们只关心宋宋老师晚上在床上健身那一分钟,如何快速对有价值数据"提纯"成为目前大数据背景下待解决的难题。

大数据应用场景

1、抖音:推荐的都是你喜欢的视频

2、电商站内广告推荐:给用户推荐可能喜欢的商品

3、零售:分析用户消费习惯,为用户购买商品提供方便,从而提升商品销量。经典案例,纸尿布+啤酒。

4、物流仓储:京东物流,上午下单下午送达、下午下单次日上午送达

5、保险:海量数据挖掘及风险预测,助力保险行业精准营销,提升精细化定价能力

6、金融:多维度体现用户特征,帮助金融机构推荐优质客户,防范欺诈风险

7、房产:大数据全面助力房地产行业,打造精准投策与营销,选出更合适的地,建造更合适的楼,卖给更合适的人

8、人工智能 + 5G + 物联网 + 虚拟与现实

Hadoop概述

Hadoop是什么

1)Hadoop是一个由Apache基金会所开发的分布式系统基础架构

2)主要解决,海量数据的存储和海量数据的分析计算问题

3)广义上来说,Hadoop通常是指一个更广泛的概念------**

Hadoop生态圈**。

Hadoop发展历史(了解)

1)Hadoop创始人Doug Cutting,为了实现与Google类似的全文搜索功能,他在Lucene框架基础上进行优化升级,查询引擎和索引引擎。

2)2001年年底Lucene成为Apache基金会的一个子项目。

3)对于海量数据的场景,Lucene框架面对与Google同样的困难,存储海量数据困难,检索海量速度慢。

4)学习和模仿Google解决这些问题的办法 :微型版Nutch。

5)可以说Google是Hadoop的思想之源(Google在大数据方面的三篇论文)
GFS --->HDFS
Map-Reduce --->MR
BigTable --->HBase

6)2003-2004年,Google公开了部分GFS和MapReduce思想的细节,以此为基础Doug Cutting等人用了2年业余时间实现了DFS和MapReduce机制,使Nutch性能飙升。

7)2005 年Hadoop 作为 Lucene的子项目 Nutch的一部分正式引入Apache基金会。

8)2006 年 3 月份,Map-Reduce和Nutch Distributed File System (NDFS)分别被纳入到 Hadoop 项目中,Hadoop就此正式诞生,标志着大数据时代来临。

9)名字来源于Doug Cutting儿子的玩具大象

Hadoop三大发行版本(了解)

Hadoop三大发行版本:Apache、Cloudera、Hortonworks

Apache版本最原始(最基础)的版本,对于入门学习最好。2006

Cloudera内部集成了很多大数据框架,对应产品CDH。2008

Hortonworks文档较好,对应产品HDP。2011

Hortonworks现在已经被Cloudera公司收购,推出新的品牌CDP。

Hadoop优势(4高)

  • 1)高可靠性:Hadoop底层维护多个数据副本,所以即使Hadoop某个计算元素或存储出现故障,也不会导致数据的丢失。
  • 2)高扩展性:在集群间分配任务数据,课方便的扩展数以千计的节点。
  • 3)高效性:在MapReduce的思想下,Hadoop是并行工作的,以加快任务处理速度。
  • 4)高容错性:能够自动将失败的任务重新分配。

Hadoop组成(面试重点)

Hadoop1.x、2.x、3.x区别

在Hadoop1.x时代,Hadoop中的MapReduce同时处理业务逻辑运算和资源的调度,耦合性较大

在Hadoop2.x时代,增加了Yarn。Yarn只负责资源的调度,MapReduce只负责运算

Hadoop3.x在组成上没有变化。

HDFS架构概述

Hadoop Distributed File System,简称HDFS,是一个分布式文件系统。

  • 1)NameNode(nn):存储文件的元数据,如文件名,文件目录结构,文件属性(生成时间、副本数、文件权限),以及每个文件的块列表和块所在的DataNode等
  • 2)DataNode(dn):在本地文件系统存储文件块数据 ,以及块数据的校验和
  • 3)SecondaryNameNode(2nn):每隔一段时间对NameNode元数据备份

YARN架构概述

Yet Another Resource Negotiator简称YARN ,另一种资源协调者,是Hadoop的资源管理器。

  • 1)ResourceManager(RM):整个集群资源(内存、CPU等)的老大
  • 2)NodeManager(NM):单个节点服务器资源老大
  • 3)ApplicationMaster(AM):单个任务运行的老大
  • 4)Container:容器,相当一台独立的服务器,里面封装了任务运行所需要的资源,如内存、CPU、磁盘、网络等。

    说明1:客户端可以有多个
    说明2:集群上可以运行多个ApplicationMaster
    说明3:每个NodeManager上可以有多个Container

MapReduce架构概述

MapReduce将计算过程分为两个阶段:Map和Reduce

1)Map阶段并行处理输入数据

2)Reduce阶段对Map结果进行汇总

HDFS、YARN、MapReduce三者关系

大数据技术生态体系

图中涉及的技术名词解释如下:
1)Sqoop :Sqoop是一款开源的工具,主要用于在Hadoop、Hive与传统的数据库(MySQL)间进行数据的传递,可以将一个关系型数据库(例如 :MySQL,Oracle 等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。
2)Flume :Flume是一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统,Flume支持在日志系统中定制各类数据发送方,用于收集数据;
3)Kafka :Kafka是一种高吞吐量的分布式发布订阅消息系统;
4)Spark :Spark是当前最流行的开源大数据内存计算框架。可以基于Hadoop上存储的大数据进行计算。
5)Flink :Flink是当前最流行的开源大数据内存计算框架。用于实时计算的场景较多。
6)Oozie :Oozie是一个管理Hadoop作业(job)的工作流程调度管理系统。
7)Hbase :HBase是一个分布式的、面向列的开源数据库。HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库。
8)Hive :Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的SQL查询功能,可以将SQL语句转换为MapReduce任务进行运行。其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。
9)ZooKeeper:它是一个针对大型分布式系统的可靠协调系统,提供的功能包括:配置维护、名字服务、分布式同步、组服务等。

推荐系统框架图

常用端口号说明

端口名称 Hadoop2.x Hadoop3.x
NameNode内部通信端口 8020 / 9000 8020 / 9000/9820
NameNode HTTP UI 50070 9870
MapReduce查看执行任务端口 8088 8088
历史服务器通信端口 19888 19888
相关推荐
宅小海3 小时前
scala String
大数据·开发语言·scala
小白的白是白痴的白3 小时前
11.17 Scala练习:梦想清单管理
大数据
java1234_小锋3 小时前
Elasticsearch是如何实现Master选举的?
大数据·elasticsearch·搜索引擎
JessieZeng aaa5 小时前
CSV文件数据导入hive
数据仓库·hive·hadoop
Java 第一深情7 小时前
零基础入门Flink,掌握基本使用方法
大数据·flink·实时计算
MXsoft6187 小时前
华为服务器(iBMC)硬件监控指标解读
大数据·运维·数据库
PersistJiao8 小时前
Spark 分布式计算中网络传输和序列化的关系(二)
大数据·网络·spark·序列化·分布式计算
九河云8 小时前
如何对AWS进行节省
大数据·云计算·aws
FreeIPCC9 小时前
谈一下开源生态对 AI人工智能大模型的促进作用
大数据·人工智能·机器人·开源
梦幻通灵9 小时前
ES分词环境实战
大数据·elasticsearch·搜索引擎